Artículo

Gara, P.M.D.; Garabano, N.I.; Portoles, M.J.L.; Moreno, M.S.; Dodat, D.; Casas, O.R.; Gonzalez, M.C.; Kotler, M.L. "ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells" (2012) Journal of Nanoparticle Research. 14(3)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The capability of silicon nanoparticles to increase the yield of reactive species upon 4 MeV X-ray irradiation of aqueous suspensions and C6 glioma cell cultures was investigated. ROS generation was detected and quantified using several specific probes. The particles were characterized by FTIR, XPS, TEM, DLS, luminescence, and adsorption spectroscopy before and after irradiation to evaluate the effect of high energy radiation on their structure. The total concentration of O 2 ·-/HO 2 ·, HO ·, and H 2O 2 generated upon 4-MeV X-ray irradiation of 6.4 μM silicon nanoparticle aqueous suspensions were on the order of 10 μM per Gy, ten times higher than that obtained in similar experiments but in the absence of particles. Cytotoxic 1O 2 was generated only in irradiation experiments containing the particles. The particle surface became oxidized to SiO 2 and the luminescence yield reduced with the irradiation dose. Changes in the surface morphology did not affect, within the experimental error, the yields ofROSgenerated per Gy. X-ray irradiation of glioma C6 cell cultures with incorporated silicon nanoparticles showed a marked production of ROS proportional to the radiation dose received. In the absence of nanoparticles, the cells showed no irradiation- enhanced ROS generation. The obtained results indicate that silicon nanoparticles of <5 nm size have the potential to be used as radiosensitizers for improving the outcomes of cancer radiotherapy. Their capability of producing 1O 2 upon X-ray irradiation opens novel approaches in the design of therapy strategies. © Springer Science+Business Media B.V. 2012.

Registro:

Documento: Artículo
Título:ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells
Autor:Gara, P.M.D.; Garabano, N.I.; Portoles, M.J.L.; Moreno, M.S.; Dodat, D.; Casas, O.R.; Gonzalez, M.C.; Kotler, M.L.
Filiación:CITOMA, Fundación Avanzar, Instituto de Terapia Radiante S.A., Calle 60 Nro. 480 (1900), La Plata, Argentina
INIFTA, Departamento de Química, Facultad de Ciencias Exactas, CC16 Suc. 4 (1900), La Plata, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Argentina
Palabras clave:Glioma C6 cells; Radiotherapy; ROS; Silicon nanoparticles; Singlet molecular Oxygen; X-rays; Aqueous suspensions; C6 cells; Cytotoxic; Experimental errors; FTIR; High energy radiation; Irradiation dose; Irradiation experiments; Particle surface; Radiosensitizers; Reactive species; ROS; Silicon nanoparticles; Singlet molecular oxygen; Therapy strategies; X ray irradiation; Adsorption; Cell culture; Experiments; Fourier transform infrared spectroscopy; Irradiation; Luminescence; Nanoparticles; Radiation; Radiotherapy; Silicon oxides; Tumors; X rays; Suspensions (fluids); hydrogen peroxide; nanoparticle; radiosensitizing agent; reactive oxygen metabolite; scavenger; silicon; silicon dioxide; silicon nanoparticle; singlet oxygen; unclassified drug; adsorption spectroscopy; animal cell; article; cancer radiotherapy; cell suspension; chemical structure; controlled study; cytotoxicity; glioma cell; infrared spectroscopy; ionizing radiation; light scattering; luminescence; nonhuman; particle size; priority journal; radiation dose; radiation response; rat; spectroscopy; surface property; transmission electron microscopy; tumor cell culture; X ray; X ray photoelectron spectroscopy
Año:2012
Volumen:14
Número:3
DOI: http://dx.doi.org/10.1007/s11051-012-0741-8
Título revista:Journal of Nanoparticle Research
Título revista abreviado:J. Nanopart. Res.
ISSN:13880764
CAS:hydrogen peroxide, 7722-84-1; silicon, 7440-21-3; silicon dioxide, 10279-57-9, 14464-46-1, 14808-60-7, 15468-32-3, 60676-86-0, 7631-86-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13880764_v14_n3_p_Gara

Referencias:

  • Babich, H., Borenfreund, E., Applications of the neutral red cytotoxicity assay to in vitro toxicology (1990) ATLA, 18, pp. 129-144
  • Bertolini, G., Coche, A., (1968) Semiconductor Detectors, , North Holland Publishing Co., New York
  • Bosio, G.N., David Gara, P.M., Garcia Einschlag, F.S., Gonzalez, M.C., Del Panno, M.T., Photodegradation of soil organic matter and its effect on gram-negative bacterial growth (2008) Photochem Photobiol, 84, pp. 1126-1132
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Carter, J.D., Cheng, N.N., Qu, Y., Suarez, G.D., Guo, T., Nanoscale energy deposition by X-ray absorbing nanostructures (2007) Journal of Physical Chemistry B, 111 (40), pp. 11622-11625. , DOI 10.1021/jp075253u
  • Chen, M., Von Mikecz, A., Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO 2 nanoparticles (2005) Experimental Cell Research, 305 (1), pp. 51-62. , DOI 10.1016/j.yexcr.2004.12.021
  • Cooney, R.R., Sewall, S.L., Dias, E.A., Sagar, D.M., Anderson, K.E.H., Unified picture of electron and hole relaxation pathways in semiconductor quantum dots (2007) Phys Rev B, 75, p. 245311
  • Dennis, E.J., Dolmaris, G.C., Fucamara, D., Jain, R.K., TIMELINE: Photodynamic therapy for cancer (2003) Nat Rev Cancer, 3, pp. 380-387
  • Erogbogbo, F., Tien, C.A., Chang, C.W., Yong, K.T., Law, W.C., Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells (2011) Bioconjugate Chem, 22, pp. 1081-1088
  • Hackley, V.A., Clogston, J.D., Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering (2007) NIST-NCL Joint Assay Protocol PCC-1, Version 1.0, , http://ncl.cancer.gov/NCL_Method_NIST-NCL_PCC-1.pdf, Accessed 13 July 2011
  • Hall, E.J., Giaccia, A.J., (2006) Radiobiology for the Radiologist, , Lippincott Williams & Wilkins, Philadelphia
  • Hubbell, J.H., Review of photon interaction cross section data in the medical and biological context (1999) Physics in Medicine and Biology, 44 (1), pp. R1-R22. , DOI 10.1088/0031-9155/44/1/001, PII S0031915599742090
  • Hubbell, J.H., Seltzer, S.M., (2010) Tables of X-ray Mass Attenuation Coefficients and Mass Energy-absorption Coefficients from 1 KeV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, , http://www.nist.gov/pml/data/xraycoef/index.cfm, Ionizing Radiation Division, Physics Laboratory, NIST. Accessed 13 July 2011
  • Isakovic, A., Markovic, Z., Nikolic, N., Todorovic-Markovic, B., Vranjes-Djuric, S., Harhaji, L., Raicevic, N., Trajkovic, V., Inactivation of nanocrystalline C 60 cytotoxicity by gamma-irradiation (2006) Biomaterials, 27 (29), pp. 5049-5058. , DOI 10.1016/j.biomaterials.2006.05.047, PII S0142961206005060
  • Juzenas, P., Chen, W., Sun, Y.-P., Coelho, M.A.N., Generalov, R., Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer (2008) Adv Drug Deliv Rev, 60, pp. 1600-1614
  • Kang, Z., Liu, Y., Lee, S.-T., Small-sized silicon nanoparticles: New nanolights and nanocatalysts (2011) Nanoscale, 3, pp. 777-791
  • Knoll, G.F., (1989) Radiation Detection and Measurement, , Wiley, New York
  • Kohn, T., Nelson, K.L., Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters (2007) Environmental Science and Technology, 41 (1), pp. 192-197. , DOI 10.1021/es061716i
  • Kovalev, D., Fujii, M., Silicon nanocrystals: Photosensitizers for oxygen molecules (2005) Advanced Materials, 17 (21), pp. 2531-2544. , DOI 10.1002/adma.200500328
  • Kravets, V.G., Meier, C., Konjhodzic, D., Lorke, A., Wiggers, H., Infrared properties of silicon nanoparticles (2005) Journal of Applied Physics, 97 (8), pp. 1-5. , DOI 10.1063/1.1866475, 084306
  • Lide, D.R., (2009) Handbook of Chemistry and Physics, , CRC Press. Inc., Boca Raton Llansola Portolés MJ, Rodriguez
  • Nieto, F., Soria, D.B., Amalvy, J.I., Peruzzo, P.J., Photophysical properties of blueemitting silicon nanoparticles (2009) J Phys Chem C, 113, pp. 13694-13702
  • Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Roman, E., Silicon nanoparticle photophysics and singlet oxygen generation (2010) Langmuir, 26, pp. 10953-10960
  • Mitrasinovic, P.M., Mihajlovic, M.L., Recent advances in radiation therapy of cancer cells: A step towards an experimental and systems biology framework (2008) Curr Radiopharm, 1, pp. 22-29
  • Orrenius, S., Reactive oxygen species in mitochondria-mediated cell death (2007) Drug Metabolism Reviews, 39 (2-3), pp. 443-455. , DOI 10.1080/03602530701468516, PII 781828662
  • Ouyang, M., Yuan, C., Muisener, R.J., Boulares, A., Koberstein, J.T., Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes (2000) Chem Mater, 12, pp. 1591-1596
  • Ozcan, I., Bouchemal, K., Segura-Sanchez, F., Abac, O., Ozer, O., Guneri, T., Ponchel, G., Effects of sterilization techniques on the PEGylated poly (fÁ -benzyl-L-glutamate) (PBLG) nanoparticles (2009) Acta Pharmaceut Sci, 51, pp. 211-218
  • Park, Y.-S., Liz-Marzan, L.M., Kasuya, A., Kobayashi, Y., Nagao, D., Konno, M., Mamykin, S., Ohuchi, N., X-ray absorption of gold nanoparticles with thin silica shell (2006) Journal of Nanoscience and Nanotechnology, 6 (11), pp. 3503-3506. , DOI 10.1166/jnn.2006.044
  • Park, J.-H., Gu, L., Von Maltzahn, G., Ruoslahti, E., Bhatia, S.N., Biodegradable luminescent porous silicon nanoparticles for in vivo applications (2009) Nat Mater, 8, pp. 331-336
  • Propst, E.K., Kohl, P.A., The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile (1994) J Electrochem Soc, 141, pp. 1006-1013
  • Repetto, G., Del Peso, A., Zurita, J.L., Neutral red uptake assay for the estimation of cell viability/ cytotoxicity (2008) Nat Protoc, 3, pp. 1125-1131
  • Ross, A.B., Mallard, W.G., Helman, W.P., (1998) NDRL-NIST Solution Kinetics Database, , http://kinetics.nist.gov/solution/, Ver. 4.0. Accessed 13 July 2011
  • Ryckman, J.D., Reed, R.A., Weller, R.A., Fleetwood, D.M., Weiss, S.M., Enhanced room temperature oxidation in silicon and porous silicon under 10 keV X-ray irradiation (2010) J Appl Phys, 108, pp. 113528-113534
  • Schärtl, W., (2007) Light Scattering from Polymer Solutions and Nanoparticle Dispersions, , Springer, Berlin
  • Seino, S., Yamamoto, T.A., Hashimoto, K., Okuda, S., Chitose, N., Gamma-ray irradiation effect on aqueous phenol solutions dispersing TiO 2 or Al 2O 3 nanoparticles (2003) Rev Adv Mater Sci, 4, pp. 70-74
  • Soffietti, R., Leoncini, B., Ruda, R., New developments in the treatment of malignant gliomas (2007) Expert Review of Neurotherapeutics, 7 (10), pp. 1313-1326. , http://www.future-drugs.com/doi/pdf/10.1586/14737175.7.10.1313, DOI 10.1586/14737175.7.10.1313
  • St-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D., Topology of superoxide production from different sites in the mitochondrial electron transport chain (2002) Journal of Biological Chemistry, 277 (47), pp. 44784-44790. , DOI 10.1074/jbc.M207217200
  • Takahashi, J., Misawa, M., Analysis of potential radiosensitizing materials for X-ray-induced photodynamic therapy (2007) NanoBiotechnology, 3, pp. 116-126
  • Wang, P.W., Bater, S., Zhang, L.P., Ascherl, M., Craig, J.H., XPS investigation of electron beam effects on a trimethylsilane dosed Si(100) surface (1995) Appl Surf Sci, 90, pp. 413-417
  • Wang, L., Yang, W., Read, P., Larner, J., Sheng, K., Tumor cell apoptosis induced by nanoparticle conjugate in combination with radiation therapy (2010) Nanotechnology, 21, pp. 475103-475110
  • Yang, C.S., Oh, K.S., Ryu, J.Y., Kim, D.C., Shou-Yong, J., Choi, C.K., Lee, H.-J., Chang, H.Y., A study on the formation and characteristics of the Si-O-C-H composite thin films with low dielectric constant for advanced semiconductor devices (2001) Thin Solid Films, 390 (1-2), pp. 113-118. , DOI 10.1016/S0040-6090(01)00931-2, PII S0040609001009312
  • Yang, W., Read, P.W., Mi, J.M., Baisden, J.M., Reardon, K.A., Semiconductor nanoparticles as energy mediators for photosensitizer- enhanced radiotherapy (2008) Int J Radiat Oncol, 72, pp. 633-635
  • Yoffe, A.D., Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems (2001) Adv Phys, 50, pp. 1-208
  • Zhang, X.D., Guo, M.L., Wu, H.Y., Sun, Y.M., Ding, Y.Q., Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy (2009) Int J Nanomed, 4, pp. 165-173

Citas:

---------- APA ----------
Gara, P.M.D., Garabano, N.I., Portoles, M.J.L., Moreno, M.S., Dodat, D., Casas, O.R., Gonzalez, M.C.,..., Kotler, M.L. (2012) . ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. Journal of Nanoparticle Research, 14(3).
http://dx.doi.org/10.1007/s11051-012-0741-8
---------- CHICAGO ----------
Gara, P.M.D., Garabano, N.I., Portoles, M.J.L., Moreno, M.S., Dodat, D., Casas, O.R., et al. "ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells" . Journal of Nanoparticle Research 14, no. 3 (2012).
http://dx.doi.org/10.1007/s11051-012-0741-8
---------- MLA ----------
Gara, P.M.D., Garabano, N.I., Portoles, M.J.L., Moreno, M.S., Dodat, D., Casas, O.R., et al. "ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells" . Journal of Nanoparticle Research, vol. 14, no. 3, 2012.
http://dx.doi.org/10.1007/s11051-012-0741-8
---------- VANCOUVER ----------
Gara, P.M.D., Garabano, N.I., Portoles, M.J.L., Moreno, M.S., Dodat, D., Casas, O.R., et al. ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. J. Nanopart. Res. 2012;14(3).
http://dx.doi.org/10.1007/s11051-012-0741-8