Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics. © 2015 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor
Autor:Arrachea, L.; Von Oppen, F.
Filiación:Departamento de Física, FCEyN, Universidad de Buenos Aires and IFIBA, Pabellón i, Ciudad Universitaria, CABA, 1428, Argentina
International Center for Advanced Studies, UNSAM, Campus Miguelete, 25 de Mayo y Francia, Buenos Aires, 1650, Argentina
Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Berlin, 14195, Germany
Palabras clave:Magnetization dynamics; Quantum spin Hall effect; Topological insulators; Magnetization; Scattering parameters; Spin dynamics; Spin Hall effect; Landau-Lifshitz-Gilbert equations; Magnetization dynamics; Quantum Spin hall effect; Quantum spin halls; Scattering matrix approach; Scattering theory; Spin transfer torque; Topological insulators; Quantum Hall effect
Año:2015
Volumen:74
Página de inicio:596
Página de fin:602
DOI: http://dx.doi.org/10.1016/j.physe.2015.08.031
Título revista:Physica E: Low-Dimensional Systems and Nanostructures
Título revista abreviado:Phys E
ISSN:13869477
CODEN:PELNF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13869477_v74_n_p596_Arrachea

Referencias:

  • Qi, X.-L., Hughes, T.L., Zhang, S.-C., Fractional charge and quantized current in the quantum spin Hall state (2008) Nat. Phys., 4, pp. 273-276
  • Meng, Q., Vishveshwara, S., Hughes, T.L., Spin-transfer torque and electric current in helical edge states in quantum spin Hall devices (2014) Phys. Rev. B, 90, p. 205403
  • Qi, X.-L., Zhang, S.-C., Field-induced gap and quantized charge pumping in a nanoscale helical wire (2009) Phys. Rev. B, 79, p. 235442
  • Thouless, D.J., Quantization of particle transport (1983) Phys. Rev. B, 27, pp. 6083-6087
  • Bustos-Marun, R., Refael, G., Von Oppen, F., Adiabatic quantum motors (2013) Phys. Rev. Lett., 111, p. 060802
  • Bode, N., Viola Kusminskiy, S., Egger, R., Von Oppen, F., Scattering theory of current-induced forces in mesoscopic systems (2011) Phys. Rev. Lett., 107, p. 036804
  • Bode, N., Viola Kusminskiy, S., Egger, R., Von Oppen, F., Current-induced forces in mesoscopic systems: A scattering matrix approach (2012) Beilstein J. Nanotechnol., 3, p. 144
  • Thomas, M., Karzig, T., Viola Kusminskiy, S., Zarand, G., Von Oppen, F., Scattering theory of adiabatic reaction forces due to out-of-equilibrium quantum environments (2012) Phys. Rev. B, 86, p. 195419
  • Bode, N., Arrachea, L., Lozano, G.S., Nunner, T.S., Von Oppen, F., Current-induced switching in transport through anisotropic magnetic molecules (2012) Phys. Rev. B, 85, p. 115440
  • Büttiker, M., Four-terminal phase-coherent conductance (1986) Phys. Rev. Lett., 57, p. 1761
  • Büttiker, M., Scattering theory of thermal and excess noise in open conductors (1990) Phys. Rev. Lett., 65, pp. 2901-2904
  • Büttiker, M., Imry, Y., Landauer, R., Pinhas, S., Generalized many-channel conductance formula with application to small rings (1985) Phys. Rev. B, 31, pp. 6207-6215
  • Büttiker, M., Scattering theory of current and intensity noise correlations in conductors and wave guides (1992) Phys. Rev. B, 46, pp. 12485-12507
  • Büttiker, M., Blanter, Y., Shot noise in mesoscopic conductors (2000) Phys. Rep., 336, pp. 1-166
  • Büttiker, M., Absence of backscattering in the quantum Hall effect in multiprobe conductors (1988) Phys. Rev. B, 38, pp. 9375-9389
  • Delplace, P., Li, J., Büttiker, M., Magnetic-field-induced localization in 2D topological insulators (2012) Phys. Rev. Lett., 109, p. 246803
  • Pastawski, H.M., Classical and quantum transport from generalized Landauer-Büttiker equations. II. Time-dependent resonant tunneling (1992) Phys. Rev. B, 46, pp. 4053-4070
  • Jauho, A.-P., Wingreen, N.S., Meir, Y., Time-dependent transport in interacting and noninteracting resonant-tunneling systems (1994) Phys. Rev. B, 50, pp. 5528-5544
  • Arrachea, L., Green-function approach to transport phenomena in quantum pumps (2005) Phys. Rev. B, 72, p. 125349
  • Arrachea, L., Moskalets, M., Relation between scattering-matrix and Keldysh formalisms for quantum transport driven by time-periodic fields (2006) Phys. Rev. B, 74, p. 245322
  • Kohler, S., Lehmann, J., Hänggi, P., Driven quantum transport on the nanoscale (2005) Phys. Rep., 406, pp. 379-443
  • Büttiker, M., Thomas, H., Prêtre, A., Current partition in multiprobe conductors in the presence of slowly oscillating external potentials (1994) Z. Phys. B Condens. Matter, 94, pp. 133-137
  • Brouwer, P.W., Scattering approach to parametric pumping (1998) Phys. Rev. B, 58, pp. 10135-10138
  • Avron, J.E., Elgart, A., Graf, G.M., Sadum, L., Optimal quantum pumps (2001) Phys. Rev. B, 87, p. 236601
  • Vavilov, M.G., Ambegoakar, V., Aleiner, I.L., Charge pumping and photovoltaic effect in open quantum dots (2001) Phys. Rev. B, 63, p. 195313
  • Moskalets, M., Büttiker, M., Adiabatic quantum pump in the presence of external ac voltages (2004) Phys. Rev. B, 69, p. 205316
  • Switkes, M., Marcus, C.M., Campman, M.K., Gossard, A.C., An adiabatic quantum electron pump (1999) Science, 283, pp. 1905-1909
  • Leek, P.J., Buitelaar, M.R., Talyanskii, V.I., Smith, C.G., Anderson, D., Jones, G.A.C., Wei, J., Cobden, D.H., Charge pumping in carbon nanotubes (2005) Phys. Rev. Lett., 95, p. 256802
  • Geerligs, L.J., Anderegg, V.F., Holweg, P.A.M., Mooij, J.E., Pothier, H., Esteve, D., Urbina, C., Devoret, M.H., Frequency-locked turnstile device for single electrons (1990) Phys. Rev. Lett., 64, pp. 2691-2694
  • DiCarlo, L., Marcus, C.M., Harris, J.S., Jr., Photocurrent, rectification, and magnetic field symmetry of induced current through quantum dots (2003) Phys. Rev. Lett., 91, p. 246804
  • Blumenthal, M.D., Kaestner, B., Li, L., Giblin, S., Hanssen, T.J.B.M., Pepper, M., Anderson, D., Ritchie, D.A., Gigahertz quantized charge pumping (2007) Nat. Phys., 3, pp. 343-347
  • Moskalets, M., Büttiker, M., Floquet scattering theory of quantum pumps (2002) Phys. Rev. B, 66, p. 205320
  • Moskalets, M., Haack, G., (2015) Single-electron Coherence: Finite Temperature Versus Pure Dephasing, , http://arXiv:1506.09028
  • Fernandez-Alcazar, L.J., Bustos-Marun, R.A., Pastawski, H.M., Decoherence in current induced forces: Application to adiabatic quantum motors (2015) Phys. Rev. B, 92, p. 075406
  • Pistolesi, F., Blanter, Y.M., Martin, I., Self-consistent theory of molecular switching (2008) Phys. Rev. B, 78
  • Tserkovnyak, Y., Brataas, A., Bauer, G.E.W., Enhanced Gilbert damping in thin ferromagnetic films (2002) Phys. Rev. Lett., 88, p. 117601
  • Brataas, A., Tserkovnyak, Y., Bauer, G.E.W., Scattering theory of Gilbert damping (2008) Phys. Rev. Lett., 101, p. 037207
  • Brataas, A., Tserkovnyak, Y., Bauer, G.E.W., Magnetization dissipation in ferromagnets from scattering theory (2011) Phys. Rev. B, 84, p. 054416
  • Hals, K.M.D., Brataas, A., Tserkovnyak, Y., Scattering theory of charge-current-induced magnetization dynamics (2010) Europhys. Lett., 90, p. 47002
  • Ludovico, M.F., Battista, F., Von Oppen, F., Arrachea, L., (2015) Adiabatic Response and Quantum Thermoelectrics for Ac Driven Quantum Systems, , http://arXiv:1506.08617
  • Arrachea, L., Moskalets, M., Martin-Moreno, L., Heat production and energy balance in nanoscale engines driven by time-dependent fields (2007) Phys. Rev. B, 75, p. 245420
  • Juergens, S., Haupt, F., Moskalets, M., Splettstoesser, J., Thermoelectric performance of a driven double quantum dot (2013) Phys. Rev. B, 87, p. 245423
  • Moskalets, M., Büttiker, M., Heat production and current noise for single- and double-cavity quantum capacitors (2009) Phys. Rev. B, 80, p. 081302

Citas:

---------- APA ----------
Arrachea, L. & Von Oppen, F. (2015) . Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor. Physica E: Low-Dimensional Systems and Nanostructures, 74, 596-602.
http://dx.doi.org/10.1016/j.physe.2015.08.031
---------- CHICAGO ----------
Arrachea, L., Von Oppen, F. "Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor" . Physica E: Low-Dimensional Systems and Nanostructures 74 (2015) : 596-602.
http://dx.doi.org/10.1016/j.physe.2015.08.031
---------- MLA ----------
Arrachea, L., Von Oppen, F. "Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor" . Physica E: Low-Dimensional Systems and Nanostructures, vol. 74, 2015, pp. 596-602.
http://dx.doi.org/10.1016/j.physe.2015.08.031
---------- VANCOUVER ----------
Arrachea, L., Von Oppen, F. Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor. Phys E. 2015;74:596-602.
http://dx.doi.org/10.1016/j.physe.2015.08.031