Artículo

de Rezende, S.M.; Franchini, C.A.; Dieuzeide, M.L.; Duarte de Farias, A.M.; Amadeo, N.; Fraga, M.A. "Glycerol steam reforming over layered double hydroxide-supported Pt catalysts" (2015) Chemical Engineering Journal. 272:108-118
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Layered double hydroxides containing Mg and Al (Mg/Al ratios of 3 and 5) were used as support for Pt-based catalysts for glycerol steam reforming. Additionally, catalysts supported on the parent MgAl mixed oxides were also evaluated. Fresh catalyst samples were characterized by XRD, BET, TPD-CO2 and XRF whilst the spent catalysts were examined by TEM and TPO/TGA-MS. All catalysts revealed to be active, leading to a hydrogen-rich gas stream but with distinct resistance to deactivation. The catalyst synthesized directly from the layered double hydroxide precursors with Mg/Al ratio of 3 was shown to be more effective since global and gas conversion are similar, varying within 60-25%. Major incidence of weak to moderate basic surface centers rendered catalysts more selective, reaching up to 68% selectivity to hydrogen. However, they were not enough to suppress deactivation. It was found that the formation of more stable carbon deposits play a key role on deactivation and only a minor contribution from the carbonaceous material formed from the intermediate organic liquid compounds was proposed. Highly dispersed metal centers were suggested to be important for in situ catalyst surface cleanness. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Glycerol steam reforming over layered double hydroxide-supported Pt catalysts
Autor:de Rezende, S.M.; Franchini, C.A.; Dieuzeide, M.L.; Duarte de Farias, A.M.; Amadeo, N.; Fraga, M.A.
Filiación:Instituto Nacional de Tecnologia, Laboratório de Catálise, Av. Venezuela, 82/518, Rio de Janeiro, RJ, 20081-312, Brazil
ITHES (CONICET - Universidad de Buenos Aires), Pabellón Industrias, Ciudad Universitaria, Buenos Aires, 1428, Argentina
SENAI CETIQT, Unidade Riachuelo, R. Magalhães Castro, 174, Riachuelo, Rio de Janeiro, RJ, 20961-020, Brazil
Palabras clave:Carbon deposition; Deactivation; Glycerol; Hydrogen production; LDH; Steam reforming; Carbon; Carbon dioxide; Catalyst deactivation; Catalyst selectivity; Catalysts; Glycerol; Hydrogen production; Platinum; Steam reforming; Carbon deposition; Carbonaceous materials; Catalyst surfaces; Deactivation; Layered double hydroxides; LDH; Mg-Al mixed oxide; Pt-based catalyst; Catalyst supports
Año:2015
Volumen:272
Página de inicio:108
Página de fin:118
DOI: http://dx.doi.org/10.1016/j.cej.2015.03.033
Título revista:Chemical Engineering Journal
Título revista abreviado:Chem. Eng. J.
ISSN:13858947
CODEN:CMEJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13858947_v272_n_p108_deRezende

Referencias:

  • Cortright, R.D., Davda, R.R., Dumesic, J.A., Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water (2002) Nature, 418, pp. 964-967
  • Huber, G.W., Shabaker, J.W., Dumesic, J.A., Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons (2003) Science, 300, pp. 2075-2077
  • Soares, R.R., Simonetti, D.A., Dumesic, J.A., Glycerol as a source for fuels and chemicals by low-temperature catalytic processing (2006) Angew. Chem. Int. Ed., 45, pp. 3982-3985
  • Menezes, A.O., Rodrigues, M.T., Zimmaro, A., Borges, L.E.P., Fraga, M.A., Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides (2011) Renewable Energy, 36, pp. 595-599
  • Lee, H.C., Siew, K.W., Gimbun, J., Cheng, C.K., Synthesis and characterisation of cement clinker-supported nickel catalyst for glycerol dry reforming (2014) Chem. Eng. J., 255, pp. 245-256
  • Simonetti, D.A., Kunkes, E.L., Dumesic, J.A., Gas-phase conversion of glycerol to synthesis gas over carbon-supported platinum and platinum-rhenium catalysts (2007) J. Catal., 247, pp. 298-306
  • Adhikari, S., Fernando, S., Haryanto, A., A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerin (2007) Energy Fuels, 21, pp. 2306-2310
  • Douette, A.M.D., Turn, S.Q., Wang, W., Keffer, V.I., Experimental investigation of hydrogen production from glycerin reforming (2007) Energy Fuels, 21, pp. 3499-3504
  • Dieuzeide, M.L., Iannibelli, V., Jobbagy, M., Amadeo, N., Steam reforming of glycerol over Ni/Mg/γ-Al2O3 catalysts. Effect of calcination temperatures (2012) Int. J. Hydrogen Energy, 37, pp. 14926-14930
  • Pompeo, F., Santori, G., Nichio, N.N., Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts (2010) Int. J. Hydrogen Energy, 35, pp. 8912-8920
  • Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Luo, T., Tan, C., Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in a fixed-bed reactor (2013) Chem. Eng. J., 220, pp. 133-142
  • Adhikari, S., Fernando, S., Haryanto, A., Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts (2007) Catal. Today, 129, pp. 355-364
  • Czernik, S., French, R., Feik, C., Chornet, E., Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes (2002) Ind. Eng. Chem. Res., 41, pp. 4209-4215
  • Hirai, T., Ikenaga, N., Miyake, T., Suzuki, T., Production of hydrogen by steam reforming of glycerin on ruthenium catalyst (2005) Energy Fuels, 19, pp. 1761-1762
  • Kunkes, E.L., Soares, R.R., Simonetti, D.A., Dumesic, J.A., An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift (2009) Appl. Catal. B, 90, pp. 693-698
  • Zhang, B., Tang, X., Li, Y., Xu, Y., Shen, W., Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts (2007) Int. J. Hydrogen Energy, 32, pp. 2367-2373
  • Adhikari, S., Fernando, S., To, S., Bricka, R.M., Steele, P.H., Haryanto, A., Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts (2008) Energy Fuels, 22, pp. 1220-1226
  • Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Guemez, M.B., Navarro, R.M., Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La (2008) Top. Catal., 49, pp. 46-58
  • Pompeo, F., Santori, G.F., Nichio, N.N., Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts (2011) Catal. Today, 172, pp. 183-188
  • Cheng, C.K., Foo, S.Y., Adesina, A.A., Carbon deposition on bimetallic Co-Ni/Al2O3 catalyst during steam reforming of glycerol (2011) Catal. Today, 164, pp. 268-274
  • Ciftci, A., Peng, B., Jentys, A., Lercher, J.A., Hensen, E.J.M., Support effects in the aqueous phase reforming of glycerol over supported platinum catalysts (2012) Appl. Catal. A, pp. 113-119
  • Luo, N.J., Wang, J.A., Xiao, T.C., Cao, F.H., Fang, D.Y., Influence of nitrogen on the catalytic behaviour of Pt/γ-Al2O3 catalyst in glycerol reforming process (2011) Catal. Today, 166, pp. 123-128
  • Dieuzeide, M.L., Amadeo, N.E., Thermodynamic analysis of glycerol steam reforming (2010) Chem. Eng. Technol., 33, pp. 89-96
  • Thyssen, V.V., Maia, T.A., Assaf, E.M., Ni supported on La2O3-SiO2 used to catalyze glycerol steam reforming (2013) Fuel, 105, pp. 358-363
  • Mawdsley, J.R., Krause, T.R., Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen (2008) Appl. Catal. A, 334, pp. 311-320
  • Elias, K.F.M., Lucredio, A.F., Assaf, E.M., Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming (2013) Int. J. Hydrogen Energy, 38, pp. 4407-4417
  • Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., Amadeo, N., Ni(II)-Mg(II)-Al(III) catalysts for hydrogen production from ethanol steam reforming: influence of the activation treatments (2010) Catal. Today, 149, pp. 407-412
  • Romero, A., Jobbágy, M., Laborde, M., Baronetti, G., Amadeo, N., Ni(II)-Mg(II)-Al(III) catalysts for hydrogen production from ethanol steam reforming: influence of the Mg content (2014) Appl. Catal. A, 470, pp. 398-404
  • Cavanni, F., Trifiró, F., Vaccari, A., Hydrotalcite-type anionic clays: preparation, properties and applications (1991) Catal. Today, 11, pp. 173-301
  • Vizcaíno, A.J., Arena, P., Baronetti, G., Carrero, A., Calles, J., Laborde, M., Amadeo, N., Ethanol steam reforming on Ni/Al2O3 catalysts: effect of Mg addition (2008) Int. J. Hydrogen Energy, 33, pp. 3489-3492
  • Morioka, H., Shimizu, Y., Sukenobu, M., Ito, K., Tanabe, E., Shishido, T., Takehira, K., Partial oxidation of methane to synthesis gas over supported Ni catalysts prepared from Ni-Ca/Al-layered double hydroxide (2001) Appl. Catal. A, 215, p. 11
  • Tomishige, K., Kanazawa, S., Suzuki, K., Asadullah, M., Sato, M., Ikushima, K., Kunimori, K., Effective heat supply from combustion to reforming in methane reforming with CO2 and O2: comparison between Ni and Pt catalysts (2002) Appl. Catal. A, 223, pp. 35-42
  • Narayanan, S., Krishna, K., Structure activity relationship in Pd/hydrotalcite: effect of calcination of hydrotalcite on palladium dispersion and phenol hydrogenation (1999) Catal. Today, 49, pp. 57-63
  • Lee, H.J., Lim, Y.S., Park, N.C., Kim, Y.C., Catalytic autothermal reforming of propane over the noble metal-doped hydrotalcite-type catalysts (2009) Chem. Eng. J., 146, pp. 295-301
  • Kovanda, F., Jindová, E., Lang, K., Kubát, P., Sedláková, Z., Preparation of layered double hydroxides intercalated with organic anions and their application in LDH/poly(butyl methacrylate) nanocomposites (2010) Appl. Clay Sci., 48, pp. 260-270
  • Olfs, H.W., Torres-Dorante, L.O., Eckelt, R., Kosslick, H., Comparison of different synthesis routes for Mg-Al layered double hydroxides (LDH): characterization of the structural phases and anion exchange properties (2009) Appl. Clay Sci., 43, pp. 459-464
  • Di Cosimo, J.I., Díez, V.K., Xu, M., Iglesia, E., Apesteguía, C.R., Structure and surface and catalytic properties of Mg-Al basic oxides (1998) J. Catal., 178, pp. 499-510
  • Lin, Y.C., Catalytic valorization of glycerol to hydrogen and syngas (2013) Int. J. Hydrogen Energy, 38, pp. 2678-2700
  • Franchini, C.A., Aranzaez, W., Duarte de Farias, A.M., Pecchi, G., Fraga, M.A., Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming (2014) Appl. Catal. B, 147, pp. 193-202
  • Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., Dumeignil, F., Glycerol dehydration to acrolein in the context of new uses of glycerol (2010) Green Chem., 12, pp. 2079-2098
  • Hattori, H., Solid base catalysis: fundamentals and applications (2010), 20th Annual Saudi-Japan Symposium, Dhahran, Saudi Arabia; Bobadilla, L.F., Penkova, A., Romero-Sarria, F., Centeno, M.A., Odriozola, J.A., Influence of the acid-base properties over NiSn/MgO-Al2O3 catalysts in the hydrogen production from glycerol steam reforming (2014) Int. J. Hydrogen Energy, 39, pp. 5704-5712
  • Dieuzeide, M.L., Jobbagy, M., Amadeo, N., Glycerol steam reforming over Ni/γ-Al2O3 catalysts, modified with Mg(II). Effect of Mg (II) content (2013) Catal. Today, 213, pp. 50-57
  • Bobadilla, L.F., Álvarez, A., Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Montes, M., Odriozola, J.A., Influence of the shape of Ni catalysts in the glycerol steam reforming (2012) Appl. Catal. B, 123 (124), pp. 379-390
  • Barbelli, M.L., Pompeo, F., Santori, G.F., Nichio, N.N., Pt catalyst supported on α-Al2O3 modified with CeO2 and ZrO2 for aqueous-phase-reforming of glycerol (2013) Catal. Today, 213, pp. 58-64
  • Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Güemez, M.B., Navarro, R.M., Sanchez-Sanchez, M.C., Fierro, J.L.G., Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen (2009) Catal. Commun., 10, pp. 1275-1278
  • Ramirez de la Piscina, P., Homs, N., Use of biofuels to produce hydrogen (reformation processes) (2008) Chem. Soc. Rev., 37, pp. 2459-2476
  • Rostrup-Nielsen, J.R., Sehested, J., Norskov, J., Hydrogen and synthesis gas by steam- and CO2 reforming (2002) Adv. Catal., 47, pp. 65-139
  • Trimm, D.L., Coke formation and minimisation during steam reforming reactions (1997) Catal. Today, 37, pp. 233-238
  • Trimm, D.L., Catalysts for the control of coking during steam reforming (1999) Catal. Today, 49, pp. 3-10
  • Remiro, A., Valle, B., Aguayo, A.T., Gayubo, A.G., Bilbao, J., Operating conditions for attenuating Ni/La2O3-α-Al2O3 catalyst deactivation in the steam reforming of bio-pil aqueous fraction (2013) Fuel Process. Technol., 115, pp. 222-232
  • Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Zhang, L., Tan, C., Renewable hydrogen production from steam reforming of glycerol by Ni-Cu-Al, Ni-Cu-Mg, Ni-Mg catalysts (2013) Int. J. Hydrogen Energy, 38, pp. 3562-3571
  • Kustrowśki, P., Chmielarz, L., Bozek, E., Sawalha, M., Roessner, F., Acidity and basicity of hydrotalcite derived mixed Mg-Al oxides studied by test reaction of MBOH conversion and temperature programmed desorption of NH3 and CO2 (2004) Mater. Res. Bull., 39, pp. 263-281
  • Bobadilla, L.F., Penkova, A., Álvarez, A., Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Odriozola, J.A., Glycerol steam reforming on bimetallic NiSn/CeO2-MgO-Al2O3 catalysts: influence of the support, reaction parameters and deactivation/regeneration processes (2015) Appl. Catal. A, 492, pp. 38-47
  • Martínez, L.M., Araque, T.M., Vargas, J.C., Roger, A.C., Effect of Ce/Zr ratio in CeZr-CoRh catalysts on the hydrogen production by glycerol steam reforming (2013) Appl. Catal. B, pp. 499-510
  • El Doukkali, M., Iriondo, A., Arias, P.L., Cambra, J.F., Gandarias, I., Barrio, V.L., Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts (2012) Int. J. Hydrogen Energy, 37, pp. 8298-8309

Citas:

---------- APA ----------
de Rezende, S.M., Franchini, C.A., Dieuzeide, M.L., Duarte de Farias, A.M., Amadeo, N. & Fraga, M.A. (2015) . Glycerol steam reforming over layered double hydroxide-supported Pt catalysts. Chemical Engineering Journal, 272, 108-118.
http://dx.doi.org/10.1016/j.cej.2015.03.033
---------- CHICAGO ----------
de Rezende, S.M., Franchini, C.A., Dieuzeide, M.L., Duarte de Farias, A.M., Amadeo, N., Fraga, M.A. "Glycerol steam reforming over layered double hydroxide-supported Pt catalysts" . Chemical Engineering Journal 272 (2015) : 108-118.
http://dx.doi.org/10.1016/j.cej.2015.03.033
---------- MLA ----------
de Rezende, S.M., Franchini, C.A., Dieuzeide, M.L., Duarte de Farias, A.M., Amadeo, N., Fraga, M.A. "Glycerol steam reforming over layered double hydroxide-supported Pt catalysts" . Chemical Engineering Journal, vol. 272, 2015, pp. 108-118.
http://dx.doi.org/10.1016/j.cej.2015.03.033
---------- VANCOUVER ----------
de Rezende, S.M., Franchini, C.A., Dieuzeide, M.L., Duarte de Farias, A.M., Amadeo, N., Fraga, M.A. Glycerol steam reforming over layered double hydroxide-supported Pt catalysts. Chem. Eng. J. 2015;272:108-118.
http://dx.doi.org/10.1016/j.cej.2015.03.033