Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanoscale zerovalent iron (nZVI) particles were successfully employed for Cr(VI) removal from aqueous solutions at pH 3. It was found that the capacity of the system increases with increasing nZVI dosage. Starting at 300. μM, a complete Cr(VI) conversion was achieved in 30. min with a Fe:Cr(VI) molar ratio (MR) of 3, and 45% conversion with MR= 1 over the same period of time. The material exhibited an enhanced reactivity in comparison with other previously tested similar materials. The proposed mechanism involves an initial reduction of Cr(VI) to Cr(III) by reaction with Fe0 or Fe(II) on the particle surface or in solution (secondary pathway), followed by an arrest on Cr(VI) removal attributed to the passivation of the surface of the nanoparticles. Passivation was confirmed by Raman and X-ray photoelectron spectroscopies (XPS). Furthermore, XPS analysis demonstrated that Cr(III) is the only Cr species present in the external layer of the nanoparticles after the reaction. Raman analysis and XPS measurements performed after mild sputtering showed that nZVI exposed to Cr(VI) presented a structure, from outside to inside, of hydroxychromites→magnetite→Fe0. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure
Autor:Nahuel Montesinos, V.; Quici, N.; Beatriz Halac, E.; Leyva, A.G.; Custo, G.; Bengio, S.; Zampieri, G.; Litter, M.I.
Filiación:Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, 1428 Ciudad Autónoma de Buenos Aires, Argentina
Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina
Escuela de Ciencia y Tecnología, Universidad de Gral. San Martín, Campus Miguelete, Martin de Irigoyen 3100, 1650 San Martin, Prov. de Buenos Aires, Argentina
Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche, Prov. de Río Negro, Argentina
Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Prov. de Río Negro, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de Gral. San Martín, Peatonal Belgrano 3563, 1 piso, 1650 San Martín, Prov. de Buenos Aires, Argentina
Palabras clave:Hexavalent chromium; Nanoscale zerovalent iron; Raman spectroscopy; XPS analysis
Año:2014
Volumen:244
Página de inicio:569
Página de fin:575
DOI: http://dx.doi.org/10.1016/j.cej.2014.01.093
Título revista:Chemical Engineering Journal
Título revista abreviado:Chem. Eng. J.
ISSN:13858947
CODEN:CMEJA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13858947_v244_n_p569_NahuelMontesinos

Referencias:

  • Saha, B., Orvig, C., Biosorbents for hexavalent chromium elimination from industrial and municipal effluents (2010) Coordin. Chem. Rev., 254, pp. 2959-2972
  • (2011), WHO, Guidelines for drinking-water quality, fourth ed., World Health Organization, Geneva; Baral, A., Engelken, R.D., Chromium-based regulations and greening in metal finishing industries in the USA (2002) Environ. Sci. Policy, 5, pp. 121-133
  • Blowes, D.W., Ptacek, C.J., Jambor, J.L., In-situ remediation of Cr(VI)-contaminated groundwater using permeable reactive walls: laboratory studies (1997) Environ. Sci. Technol., 31, pp. 3348-3357
  • Rangsivek, R., Jekel, M.R., Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment (2005) Water Res., 39, pp. 4153-4163
  • Gheju, M., Iovi, A., Kinetics of hexavalent chromium reduction by scrap iron (2006) J. Hazard. Mater., 135, pp. 66-73
  • Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., Sengupta, B., Remediation technologies for heavy metal contaminated groundwater (2011) J. Environ. Manage., 92, pp. 2355-2388
  • Mamindy-Pajany, Y., Hurel, C., Geret, F., Roméo, M., Marmier, N., Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: a pilot-scale experiment (2013) J. Hazard. Mater., pp. 213-219
  • Gheju, M., Balcu, I., Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations (2011) J. Hazard. Mater., 196, pp. 131-138
  • Zhang, W.X., Nanoscale iron particles for environmental remediation: an overview (2003) J. Nanopart. Res., 5, pp. 323-332
  • Li, X.-Q., Zhang, W.-X., Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS) (2007) J. Phys. Chem. C, 111, pp. 6939-6946
  • Pradeep, T., Anshup, S., Noble metal nanoparticles for water purification: a critical review (2009) Thin Solid Films, 517, pp. 6441-6478
  • Morgada, M.E., Levy, I.K., Salomone, V., Farías, S.S., López, G., Litter, M.I., Arsenic (V) removal with nanoparticulate zerovalent iron: effect of UV light and humic acids (2009) Catal. Today, 143, pp. 261-268
  • Yan, W., Herzing, A.A., Kiely, C.J., Zhang, W.-X., Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water (2010) J. Contam. Hydrol., 118, pp. 96-104
  • Crane, R.A., Scott, T.B., Nanoscale zero-valent iron: future prospects for an emerging water treatment technology (2012) J. Hazard. Mater., pp. 112-125
  • Wu, Y., Zhang, J., Tong, Y., Xu, X., Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles (2009) J. Hazard. Mater., 172, pp. 1640-1645
  • Scott, T.B., Popescu, I.C., Crane, R.A., Noubactep, C., Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants (2011) J. Hazard. Mater., 186, pp. 280-287
  • Powell, R.M., Puls, R.W., Hightower, S.K., Sabatini, D.A., Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation (1995) Environ. Sci. Technol., 29, pp. 1913-1922
  • Puls, R.W., Blowes, D.W., Gillham, R.W., Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina (1999) J. Hazard. Mater., 68, pp. 109-124
  • Lee, T., Lim, H., Lee, Y., Park, J.W., Use of waste iron metal for removal of Cr(VI) from water (2003) Chemosphere, 53, pp. 479-485
  • Cao, J., Zhang, W.X., Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles (2006) J. Hazard. Mater., 132, pp. 213-219
  • Gheju, M., Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems (2011) Water Air Soil Pollut., 222, pp. 103-148
  • Manning, B.A., Kiser, J.R., Kwon, H., Kanel, S.R., Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron (2006) Environ. Sci. Technol., 41, pp. 586-592
  • Li, X.-Q., Cao, J., Zhang, W.-X., Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS) (2008) Ind. Eng. Chem. Res., 47, pp. 2131-2139
  • Ai, Z., Cheng, Y., Zhang, L., Qiu, J., Efficient removal of Cr(VI) from aqueous solution with Fe at Fe2O3 core-shell nanowires (2008) Environ. Sci. Technol., 42, pp. 6955-6960
  • Wang, Q., Cissoko, N., Zhou, M., Xu, X., Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles (2011) Phys. Chem. Earth, 36, pp. 442-446
  • Alidokht, L., Khataee, A.R., Reyhanitabar, A., Oustan, S., Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution (2011) Desalination, 270, pp. 105-110
  • Kim, J.-H., Kim, J.-H., Bokare, V., Kim, E.-J., Chang, Y.-Y., Chang, Y.-S., Enhanced removal of chromate from aqueous solution by sequential adsorption-reduction on mesoporous iron-iron oxide nanocomposites (2012) J. Nanopart. Res., 14, pp. 1-12
  • Lv, X., Hu, Y., Tang, J., Sheng, T., Jiang, G., Xu, X., Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites (2013) Chem. Eng. J., 218, pp. 55-64
  • Noubactep, C., A critical review on the process of contaminant removal in Fe0-H2O systems (2008) Environ. Technol., 29, pp. 909-920
  • Balko, B.A., Tratnyek, P.G., Photoeffects on the reduction of carbon tetrachloride by zero-valent iron (1998) J. Phys. Chem. B, 102, pp. 1459-1465
  • Scherer, M.M., Balko, B.A., Tratnyek, P.G., The role of oxides in reduction reactions at the metal-water interface (1998) ACS Symposium Series, pp. 301-322
  • Noubactep, C., Schöner, A., Woafo, P., Metallic iron filters for universal access to safe drinking water (2009) Clean - Soil Air Water, 37, pp. 930-937
  • (1999) ASTM, , Standards D 1687-92
  • Sandell, E.B., (1959) Colorimetric Determination of Trace Metals, pp. 537-542. , Interscience Publishers Inc., New York
  • Custo, G., Litter, M.I., Rodríguez, D., Vázquez, C., Total reflection X-ray fluorescence trace mercury determination by trapping complexation: application in advanced oxidation technologies (2006) Spectrochim. Acta Part B: Atom. Spectrosc., 61, pp. 1119-1123
  • Fang, Z., Qiu, X., Huang, R., Qiu, X., Li, M., Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization (2011) Desalination, 280, pp. 224-231
  • Lv, X., Xu, J., Jiang, G., Tang, J., Xu, X., Highly active nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites for the removal of chromium(VI) from aqueous solutions (2012) J. Colloid Interface Sci., 369, pp. 460-469
  • dos Santos Coelho, F., Ardisson, J.D., Moura, F.C.C., Lago, R.M., Murad, E., Fabris, J.D., Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants (2008) Chemosphere, 71, pp. 90-96
  • White, A.F., Peterson, M.L., Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides (1996) Geochimi. Cosmochim. Acta, 60, pp. 3799-3814
  • Melitas, N., Chuffe-Moscoso, O., Farrell, J., Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects (2001) Environ. Sci. Technol., 35, pp. 3948-3953
  • Cornell, R.M., Schwertmann, U., Products of Iron Metal Corrosion (2004) The Iron Oxides, pp. 491-508. , Wiley-VCH Verlag GmbH & Co. KGaA, Darmstadt
  • Moulder, J., Stickle, W., Sobol, P., Bomben, K., (1992) Handbook of X-ray Photoelectron Spectroscopy, , Eden Prairie, Minnesotta

Citas:

---------- APA ----------
Nahuel Montesinos, V., Quici, N., Beatriz Halac, E., Leyva, A.G., Custo, G., Bengio, S., Zampieri, G.,..., Litter, M.I. (2014) . Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure. Chemical Engineering Journal, 244, 569-575.
http://dx.doi.org/10.1016/j.cej.2014.01.093
---------- CHICAGO ----------
Nahuel Montesinos, V., Quici, N., Beatriz Halac, E., Leyva, A.G., Custo, G., Bengio, S., et al. "Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure" . Chemical Engineering Journal 244 (2014) : 569-575.
http://dx.doi.org/10.1016/j.cej.2014.01.093
---------- MLA ----------
Nahuel Montesinos, V., Quici, N., Beatriz Halac, E., Leyva, A.G., Custo, G., Bengio, S., et al. "Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure" . Chemical Engineering Journal, vol. 244, 2014, pp. 569-575.
http://dx.doi.org/10.1016/j.cej.2014.01.093
---------- VANCOUVER ----------
Nahuel Montesinos, V., Quici, N., Beatriz Halac, E., Leyva, A.G., Custo, G., Bengio, S., et al. Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)-Cr(III) passive outer layer structure. Chem. Eng. J. 2014;244:569-575.
http://dx.doi.org/10.1016/j.cej.2014.01.093