Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

Subterranean rodents of the genus Ctenomys have experienced an explosive radiation and rapidly colonized the southern cone of South America. The torquatus group, one of the main groups of the genus, comprises several species and species complexes which inhabit the eastern part of the distribution of Ctenomys including southern Brazil, northern and central Uruguay and north-eastern Argentina. This group has undergone a high chromosomal diversification with diploid numbers varying from 41 to 70. The aim of this study was to investigate the origins of the torquatus group as well as its diversification patterns in relation to geography and cladogenesis. Based on mitochondrial cytochrome b nucleotide sequences we conducted a Bayesian multi-calibrated relaxed clock analysis to estimate the ages of the torquatus group and its main lineages. Using the estimated evolutionary rate we performed a continuous phylogeographic analysis, using a relaxed random walk model to reconstruct the geographic diffusion of the torquatus group in a temporal frame. The torquatus group originated during the early Pleistocene between 1.25 and 2.32 million years from the present in a region that includes the northwest of Uruguay and the southeast of the Brazilian state of Río Grande do Sul. Most lineages have dispersed early towards their present distribution areas going through subsequent range expansions in the last 800,000 - 700,000 years. Ctenomys torquatus went through a rapid range expansion for the last 200,000 years, becoming the most widespread species of the group. The colonization of the Corrientes and Entre Ríos Argentinean provinces supposes at least two crossing events across the Uruguay River between 1.0 and 0.5 million years before the present, in the context of a cold and dry paleoenvironment. The resulting temporal and geographic frame enables the comprehension of the incidence of both, the amplitude of distribution areas and divergence times into the patterns of chromosomal diversification found in the group. © 2018, SPB Academic Publishing bv.

Registro:

Documento: Artículo
Título:Spatial and temporal divergence of the torquatus species group of the subterranean rodent Ctenomys
Autor:Caraballo, D.A.; Rossi, M.S.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
Palabras clave:Bayesian phylodynamics; Ctenomys; Divergence times; Multi-calibrated timetree; Torquatus group; Tuco-tucos
Año:2018
Volumen:87
Número:1
Página de inicio:11
Página de fin:24
Título revista:Contributions to Zoology
Título revista abreviado:Contrib. Zool.
ISSN:13834517
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13834517_v87_n1_p11_Caraballo

Referencias:

  • The IUCN Red List of Threatened Species, , www.iucnredlist.org, Version 2016-3. Downloaded on 28 April 2017
  • Argüelles, C.F., Suárez, P., Giménez, M.D., Bidau, C.J., Intraspecific chromosome variation between different populations of Ctenomys dorbignyi (Rodentia, Ctenomyidae) from Argentina (2001) Acta Theriologica, 46, pp. 363-373
  • Bibi, F., A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics (2013) BMC Evolutionary Biology, 13, p. 166
  • Bidau, C., (2015) Family Ctenomyidae Lesson. 1842, pp. 818-877. , in: JL Patton, UFJ Pardiñas, G D'Elía, eds, Mammals of South America, Volume 2 rodents. University of Chicago Press, Chicago, USA
  • Bielejec, F., Rambaut, A., Suchard, M.A., Lemey, P., SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics (2011) Bioinformatics, 27, pp. 2910-2912
  • Bloomquist, E.W., Lemey, P., Suchard, M.A., Three roads diverged? (2010) Routes to phylogeographic inference. Trends in Ecology and Evolution, 25, pp. 626-632
  • Bossi, J., Ortiz, A., Perea, D., Pliocene to middle Pleistocene in Uruguay: a model of climate evolution (2009) Quaternary International, 210, pp. 37-43
  • Bouckaert, R., Heled, J., Kühnert, D., . Drummond, A., BEAST 2: a software platform for Bayesian evolutionary analysis (2014) PLOS Computational Biology, 10
  • Bouckaert, R., Phylogeography by diffusion on a sphere: whole world phylogeography (2016) PeerJ, 4. , http://doi.org/10.7717/peerj.2406
  • Caraballo, D.A., Abruzzese, G.A., Rossi, M.S., Diversity of tuco-tucos (Ctenomys, Rodentia) in the Northeastern wetlands from Argentina: Mitochondrial phylogeny and chromosomal evolution (2012) Genetica, 140, pp. 125-136
  • Caraballo, D.A., Belluscio, P.M., Rossi, M.S., The library model for satellite DNA evolution: a case study with the rodents of the genus Ctenomys (Octodontidae) from the Iberá marsh, Argentina (2010) Genetica, 138, pp. 201-1210
  • Caraballo, D.A., Jablonski, P.C., Rebagliati, P.J., Rossi, M.S., Chromosomal variability in tuco-tucos (Ctenomys, Rodentia) from the argentinean northeastern wetlands (2015) Mastozoología Neotropical, 22, pp. 289-301
  • Caraballo, D.A., Rossi, M.S., Integrative lineage delimitation in rodents of the Ctenomys Corrientes group (2018) Mammalia, 82 (1), pp. 35-47. , Retrieved 23 Feb. 2018, from
  • Caraballo, D.A., Tomasco, I.H., Campo, D.H., Rossi, M.S., Phylogenetic relationships between tuco-tucos (Ctenomys, Rodentia) of the Corrientes group and the C (2016) pearsoni complex. Mastozoología Neotropical, 23, pp. 39-49
  • Cook, J.A., Anderson, S., Yates, T.L., Notes on Bolivian mammals. 6 The genus Ctenomys (Rodentia, Ctenomyidae) in the highlands (1990) American Museum Novititates, 2980, pp. 1-27
  • D'Elía, G., Lessa, E.P., Cook, J.A., Molecular phylogeny of tuco- tucos, genus Ctenomys (Rodentia: Octodontidae): evaluation of the mendocinus species group and the evolution of asymmetric sperm (1999) Journal of Mammalian Evolution, 6, pp. 19-38
  • Di Persia, D.H., Neiff, J.J., Olazarri, J., The Uruguay River system (1986), pp. 599-622. , in: BR Davies, KF Walker, eds, The Ecology of River Systems. Monographiae Biologicae, vol 60. Springer, Dordrecht; Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A., Relaxed phylogenetics and dating with confidence (2006) PLOS Biology, 4
  • Drummond, A.J., Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evolutionary Biology, 7, p. 214
  • Duchêne, S., Lanfear, R., Ho, S.Y.W., The impact of calibration and clock-model choice on molecular estimates of divergence times (2014) Molecular Phylogenetics and Evolution, 78, pp. 277-289
  • Dunn, R.E., Madden, R.H., Kohn, M.J., Schmitz, M.D., Strömberg, C.A., Carlini, A.A., . Crowley, J., A new chronology for middle Eocene-early Miocene South American land mammal ages (2013) Geological Society of America Bulletin, 125, pp. 539-555
  • Edwards, C.J., Suchard, M.A., Lemey, P., Welch, J.J., Barnes, I., Fulton, T.L., . Valdiosera, C.E., Ancient hybridization and an Irish origin for the modern polar bear matriline (2011) Current Biology, 21, pp. 1251-1258
  • Ellingsen, A., Slamovits, C.H., Rossi, M.S., Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia) (2007) Gene, 392, pp. 283-290
  • Fernandes, F.A., Gonçalves, G.L., Ximenes, S.S.F., Freitas, T.R.O., Karyotypic and molecular polymorphisms in the Ctenomys torquatus (Rodentia: Ctenomyidae): taxonomic considerations (2009) Genetica, 136, pp. 449-459
  • Freitas, T.R.O., Fernandes, F.A., Fornel, R., Roratto, P.A., An endemic new species of tuco-tuco, genus Ctenomys (Rodentia: Ctenomyidae), with a restricted geographic distribution in southern Brazil (2012) Journal of Mammalogy, 93, pp. 1355-1367
  • Freitas, T.R.O., Geographic distribution and conservation of four species of the genus Ctenomys in southern Brazil (1995) Studies on Neotropical Fauna and Environment, 30, pp. 53-59
  • Freitas, T.R.O., Ctenomys lami: The highest chromosome variability in Ctenomys (Rodentia, Ctenomyidae) due to a centric fusion-fission and pericentric inversion system (2007) Acta Theriologica, 52, pp. 171-180
  • Gardner, S.L., Salazar-Bravo, J., Cook, J.A., (2014) New species of Ctenomys Blainville, 1826, , Rodentia: Ctenomyidae) from the Central Valleys of Bolivia. Special Publications of the Museum of Texas Tech University 62
  • Gradstein, F.M., Ogg, J.G., Van Kranendonk, M., On the Geologic Time Scale 2008 (2008) Newsletters on Stratigraphy, 43, pp. 5-13
  • Heath, T.A., Hedtke, S.M., Hillis, D.M., Taxon sampling and the accuracy of phylogenetic analyses (2008) Journal of Systematics and Evolution, 46, pp. 239-257
  • Heled, J., Drummond, A.J., Calibrated birth-death phylogenetic time-tree priors for Bayesian inference (2014) Systematic Biology, 64, pp. 369-383
  • Ho, S.Y.W., Phillips, M.J., Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times (2009) Systematic Biology, 58, pp. 367-380
  • Honeycutt, R.L., Rowe, D.L., Gallardo, M.H., Molecular systematics of the South American caviomorph rodents: relationships among species and genera in the family Octodontidae (2003) Molecular Phylogenetics and Evolution, 26, pp. 476-489
  • Hug, L.A., Roger, A.J., The impact of fossils and taxon sampling on ancient molecular dating analyses (2007) Molecular Biology and Evolution, 24, pp. 1889-1897
  • Lande, R., The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization (1985) Heredity, 54, pp. 323-332
  • Larkin, M.A., Blackshields, G., Brown, N.P., . Higgins, D.G., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948
  • Leaché, A.D., Grummer, J.A., Miller, M., Krishnan, S., Fujita, M.K., Böhme, W., . Ofori-Boateng, C., Bayesian inference of species diffusion in the West African Agama agama species group (Reptilia, Agamidae) (2017) Systematics and Biodiversity, 15, pp. 192-203
  • Lemey, P., Rambaut, A., Drummond, A.J., Suchard, M.A., Bayesian phylogeography finds its roots (2009) PLOS Computational Biology, 5 (9)
  • Lemey, P., Rambaut, A., Welch, J.J., Suchard, M.A., Phylogeography takes a relaxed random walk in continuous space and time (2010) Molecular Biology and Evolution, 27, pp. 1877-1885
  • Linder, H.P., Hardy, C.R., Rutschmann, F., Taxon sampling effects in molecular clock dating: an example from the African Restionaceae (2005) Molecular Phylogenetics and Evolution, 35, pp. 569-582
  • Lopes, C.M., Ximenes, S.S.F., Gava, A., Freitas, T.R.O., The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus) (2013) Heredity, 111, pp. 293-305
  • Lukoschek, V., Keogh, J.S., Avise, J.C., Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches (2012) Systematic Biology, 61, pp. 22-43
  • Martínez, P.A., Jacobina, U.P., Fernandes, R.V., Brito, C., Penone, C., Amado, T.F., Fonseca, C.R., Bidau, C.J., A comparative study on karyotypic diversification rate in mammals (2016) Heredity, 118, pp. 366-373
  • Massarini, A., Barros, M.A., Ortells, M.O., Reig, O.A., Chromosomal polymorphism and small karyotypic differentiation in Central Argentinian populations of tuco-tucos (1991) Genetica, 83, pp. 131-144
  • Mello, B., Schrago, C.G., Assignment of calibration information to deeper phylogenetic nodes is more effective in obtaining precise and accurate divergence time estimates (2013) Evolutionary Bioinformatics, 10, pp. 79-85
  • Miller, M.A., Pfeiffer, W., Schwartz, T., Creating the CIPRES Science Gateway for inference of large phylogenetic trees (2010), pp. 1-8. , Gateway Computing Environments Workshop (GCE), 2010. IEEE; Mossi, A.J., Coppini, V.J., Slaviero, L.B., Kubiak, G.B., Lerin, L.A., Oliveira, J.V., . Cansian, R.L., Comparison between Oligoryzomys nigripes and O (2014) flavescens by RAPD and genetic diversity in O. nigripes (Rodentia, Cricetidae). Brazilian Journal of Biology, 74, pp. 704-711
  • Nylander, J., (2004) MrModeltest v2. Program distributed by the author, , Evolutionary Biology Centre, Uppsala University
  • Opazo, J.C., A molecular timescale for caviomorph rodents (Mammalia, Hystricognathi) (2005) Molecular Phylogenetics and Evolution, 37, pp. 932-937
  • Ortells, M.O., Contreras, J.R., Reig, O.A., New Ctenomys karyotypes (Rodentia, Octodontidae) from north-eastern Argentina and from Paraguay confirm the extreme chromosomal multiformity of the genus (1990) Genetica, 82, pp. 189-201
  • Parada, A., D'Elía, G., Bidau, C.J., Lessa, E.P., Species groups and the evolutionary diversification of tuco-tucos, genus Ctenomys (Rodentia: Ctenomyidae) (2011) Journal of Mammalogy, 92, pp. 671-682
  • Patton, J.L., Silva, M.N., Malcolm, J.R., Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia (2000) Bulletin of the American Museum of National History, 244, pp. 1-306
  • Rabassa, J., Coronato, A., Salemme, M., Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina) (2005) Journal of South American Earth Sciences, 20, pp. 81-103
  • Rambaut, A., Suchard, M.A., Xie, D., Drummond, A.J., (2014) Tracer v1.6, , http://beast.bio.ed.ac.uk/Tracer, Available from
  • Reig, O.A., Busch, C., Ortells, M.O., Contreras, J.R., An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys (1990), pp. 71-96. , in: E Nevo and OA Reig, eds, Evolutionary biology of subterranean mammals, Alan R. Liss, New York; Reig, O.A., Kiblisky, P., Chromosome multiformity in the genus Ctenomys (Rodentia, Octodontidae (1969) A progress report. Chromosoma, 28, pp. 211-244
  • Roratto, P.A., Fernandes, F.A., Freitas, T.R.O., Phylogeography of the subterranean rodent Ctenomys torquatus: an evaluation of the riverine barrier hypothesis (2015) Journal of Biogeography, 42, pp. 694-705
  • Schulte, J.A., Undersampling taxa will underestimate molecular divergence dates: an example from the South American lizard clade Liolaemini. International (2013) Journal of Evolutionary Biology
  • Slamovits, C.H., Cook, J.A., Lessa, E.P., Rossi, M.S., Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach (2001) Molecular Biology and Evolution, 18, pp. 1708-1719
  • Soares, A.E.R., Schrago, C.G., The influence of taxon sampling on Bayesian divergence time inference under scenarios of rate heterogeneity among lineages (2015) Journal of Theoretical Biology, 364, pp. 31-39
  • Suárez-Villota, E.Y., González-Wevar, C.A., Gallardo, M.H., Vásquez, R.A., Poulin, E., Filling phylogenetic gaps and the biogeographic relationships of the Octodontidae (Mammalia: Hystricognathi) (2016) Molecular Phylogenetics and Evolution, 105, pp. 96-101
  • Tomasco, I.H., Lessa, E.P., Phylogeography of the tuco-tuco Ctenomys pearsoni: mtDNA variation and its implication for chromosomal differentiation (2007), pp. 859-882. , in: Kelt DA, Lessa EP, Salazar-Bravo J, Patton JL, eds, The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. University of California Press, Berkeley, CA; Upham, N.S., Patterson, B.D., Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi) (2012) Molecular Phylogenetics and Evolution, 63, pp. 417-429
  • Upham, N.S., Patterson, B.D., Evolution of the caviomorph rodents: a complete phylogeny and timetree of living genera (2015), pp. 63-120. , in: AI Vassallo, D Antenucci, eds, Biology of caviomorph rodents: diversity and evolution, 1st ed. SAREM Series A, Buenos Aires; Verzi, D.H., Olivares, A.I., Morgan, C.C., Álvarez, A., Contrasting phylogenetic and diversity patterns in Octodontoid rodents and a new definition of the family Abrocomidae (2016) Journal of Mammalian Evolution, 23, pp. 93-115
  • Vucetich, M.G., Arnal, M., Deschamps, C.M., Pérez, M.E., Vieytes, E.C., A brief history of caviomorph rodents as told by the fossil record (2015), pp. 11-62. , in: AI Vassallo, D Antenucci, eds, Biology of caviomorph rodents: diversity and evolution, 1st ed. SAREM Series A, Buenos Aires; Xia, X., Lemey, P., Assessing substitution saturation with DAMBE (2009), pp. 615-630. , in: P Lemey, M Salemi, AM Vandamme, eds, The phylogenetic handbook, 1st ed. Cambridge University Press, Cambridge; Xia, X., Xie, Z., Salemi, M., Cheng, L., Wang, Y., An index of substitution saturation and its application (2003) Molecular Phylogenetics and Evolution, 26, pp. 1-7
  • Xia, X., Xie, Z., DAMBE: software package for data analysis in molecular biology and evolution (2001) Journal of Heredity, 92, pp. 371-373
  • Zheng, Y., Wiens, J.J., Do missing data influence the accuracy of divergence-time estimation with BEAST? (2015) Molecular Phylogenetics and Evolution, 85, pp. 41-49

Citas:

---------- APA ----------
Caraballo, D.A. & Rossi, M.S. (2018) . Spatial and temporal divergence of the torquatus species group of the subterranean rodent Ctenomys. Contributions to Zoology, 87(1), 11-24.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13834517_v87_n1_p11_Caraballo [ ]
---------- CHICAGO ----------
Caraballo, D.A., Rossi, M.S. "Spatial and temporal divergence of the torquatus species group of the subterranean rodent Ctenomys" . Contributions to Zoology 87, no. 1 (2018) : 11-24.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13834517_v87_n1_p11_Caraballo [ ]
---------- MLA ----------
Caraballo, D.A., Rossi, M.S. "Spatial and temporal divergence of the torquatus species group of the subterranean rodent Ctenomys" . Contributions to Zoology, vol. 87, no. 1, 2018, pp. 11-24.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13834517_v87_n1_p11_Caraballo [ ]
---------- VANCOUVER ----------
Caraballo, D.A., Rossi, M.S. Spatial and temporal divergence of the torquatus species group of the subterranean rodent Ctenomys. Contrib. Zool. 2018;87(1):11-24.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13834517_v87_n1_p11_Caraballo [ ]