Artículo

Graham, J.P.; Holm, D.; Mininni, P.; Pouquet, A.; Meyers J.; Geurts B.; Sagaut P.; Geurts B.; Salvetti M.V. "The effect of subfilter-scale physics on regularization models" (2011) 2nd Workshop on Quality and Reliability of Large-Eddy Simulations, QLES 2009. 16:411-420
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The subfilter-scale (SFS) physics of regularization models are investigated to understand the regularizations’ performance as SFS models. The strong suppression of spectrally local SFS interactions and the conservation of small-scale circulation in the Lagrangianaveraged Navier-Stokes α−model (LANS−α) is found to lead to the formation of rigid bodies. These contaminate the superfilter-scale energy spectrum with a scaling that approaches k+1 as the SFS spectra is resolved. The Clark−α and Leray−α models, truncations of LANS−α, do not conserve small-scale circulation and do not develop rigid bodies. LANS−α, however, is closest to Navier-Stokes in intermittency properties. For magnetohydrodynamics (MHD), the presence of the Lorentz force as a source (or sink) for circulation and as a facilitator of both spectrally nonlocal large to small scale interactions as well as local SFS interactions prevents the formation of rigid bodies in Lagrangian-averaged MHD (LAMHD−α). We find LAMHD−α performs well as a predictor of superfilter-scale energy spectra and of intermittent current sheets at high Reynolds numbers.We expect it may prove to be a generally applicable MHD-LES. © Springer Science+Business Media B.V. 2011.

Registro:

Documento: Artículo
Título:The effect of subfilter-scale physics on regularization models
Autor:Graham, J.P.; Holm, D.; Mininni, P.; Pouquet, A.; Meyers J.; Geurts B.; Sagaut P.; Geurts B.; Salvetti M.V.
Filiación:Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany
Department of Mathematics, Imperial College London, London, United Kingdom
Computer and Computational Science Division, Los Alamos National LaboratoryNM, United States
National Center for Atmospheric Research, Boulder, CO, United States
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Alpha models; Intermittency; LES; MHD; Subgrid-scale processes
Año:2011
Volumen:16
Página de inicio:411
Página de fin:420
DOI: http://dx.doi.org/10.1007/978-94-007-0231-8_37
Título revista:2nd Workshop on Quality and Reliability of Large-Eddy Simulations, QLES 2009
Título revista abreviado:ERCOFTAC Ser.
ISSN:13824309
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13824309_v16_n_p411_Graham

Referencias:

  • Alexakis, A., Mininni, P.D., Pouquet, A., Shell-to-shell energy transfer in MHD. I. Steady state turbulence (2005) Phys. Rev. E, 72 (4)
  • Cao, C., Holm, D.D., Titi, E.S., On the Clark αmodel of turbulence: Global regularity and long-time dynamics (2005) Journal of Turbulence, 6, p. 20
  • Chen, S., Foias, C., Holm, D.D., Olson, E., Titi, E.S., Wynne, S., Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow (1998) Physical Review Letters, 81, pp. 5338-5341
  • Chollet, J.-P., Lesieur, M., Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures (1981) Journal of Atmospheric Sciences, 38, pp. 2747-2757
  • Foias, C., Holm, D.D., Titi, E.S., The Navier-Stokes-alpha model of fluid turbulence (2001) Physica D Nonlinear Phenomena, 152-153, pp. 505-519
  • Galloway, D., Frisch, U., Dynamo action in a family of flows with chaotic streamlines (1986) Geophysical and Astrophysical Fluid Dynamics, 36, pp. 53-83
  • Geurts, B.J., Holm, D.D., Regularization modeling for large-eddy simulation (2003) Physics of Fluids, 15, pp. L13-L16
  • Bernard, J., Geurts and Darryl D. Holm. Leray and LANS-αmodelling of turbulent mixing (2006) Journal of Turbulence, 7 (10), pp. 1-33
  • Goldreich, P., Sridhar, S., Toward a theory of interstellar turbulence. 2: Strong alfvenic turbulence (1995) Apj, 438, pp. 763-775
  • Gómez, D.O., Mininni, P.D., Dmitruk, P., MHD simulations and astrophysical applications (2005) Advances in Space Research, 35, pp. 899-907
  • Gómez, D.O., Mininni, P.D., Dmitruk, P., Parallel Simulations in Turbulent MHD (2005) Physica Scripta Volume T, 116, pp. 123-127
  • Pietarila Graham, J., Holm, D., Mininni, P., Pouquet, A., Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential (2007) Phys. Rev. E
  • Pietarila Graham, J., Holm, D.D., Mininni, P., Pouquet, A., Inertial range scaling, Kármán-Howarth theorem, and intermittency for forced and decaying Lagrangianaveraged MHD equations in 2D (2006) Physics of Fluids, p. 18
  • Pietarila Graham, J., Holm, D.D., Mininni, P.D., Pouquet, A., Three regularization models of the Navier-Stokes equations (2008) Physics of Fluids, 20 (3)
  • Pietarila Graham, J., Mininni, P.D., Pouquet, A., Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks (2009) Phys. Rev. E, 80 (1)
  • Guermond, J.-L., On the use of the notion of suitable weak solutions in CFD (2008) International Journal for Numerical Methods in Fluids, 57, pp. 1153-1170
  • Holm, D.D., Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics (2002) Chaos, 12, pp. 518-530
  • Holm, D.D., Marsden, J.E., Ratiu, T.S., The Euler-Poincaré Equations and Semidirect Products with Applications to Continuum Theories (1998) Adv. In Math, 137, pp. 1-81
  • Iroshnikov, P.S., Turbulence of a Conducting Fluid in a Strong Magnetic Field (1964) Soviet Astronomy, 7, p. 566
  • Kim, T.-Y., Cassiani, M., Albertson, J.D., Dolbow, J.E., Fried, E., Gurtin, M.E., Impact of the inherent separation of scales in the Navier-Stokes-αβ equations (2009) Phys. Rev. E, 79 (4)
  • Knaepen, B., Moin, P., Large-eddy simulation of conductive flows at low magnetic Reynolds number (2004) Physics of Fluids, 16
  • Kraichnan, R.H., Inertial-range spectrum of hydromagnetic turbulence (1965) Physics of Fluids, 8, pp. 1385-1387
  • Lee, E., Brachet, M.E., Pouquet, A., Mininni, P.D., Rosenberg, D., (2009) On the Lack of Universality in Decaying MHD Turbulence, , arXiv:0906.2506
  • Mason, J., Cattaneo, F., Boldyrev, S., Numerical measurements of the spectrum in magnetohydrodynamic turbulence (2008) Phys. Rev. E, 77 (3)
  • Mininni, P.D., Montgomery, D.C., Pouquet, A., Numerical solutions of the threedimensional MHD α model (2005) Phys. Rev. E, 71 (4)
  • Mininni, P.D., Montgomery, D.C., Pouquet, A.G., A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows (2005) Physics of Fluids, 17 (3)
  • Mohseni, K., Kosović, B., Shkoller, S., Marsden, J.E., Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence (2003) Physics of Fluids, 15, pp. 524-544
  • Müller, W.-C., Carati, D., Dynamic gradient-diffusion subgrid models for incompressible MHD turbulence (2002) Physics of Plasmas, 9, pp. 824-834
  • Ponty, Y., Politano, H., Pinton, J.-F., Simulation of Induction at Low Magnetic Prandtl Number (2004) Physical Review Letters, 92 (14)
  • Taylor, G.I., Green, A.E., Mechanism of the Production of Small Eddies from Large Ones (1937) Proceedings of the Royal Society of London, 158, p. 499
  • Theobald, M.L., Fox, P.A., Sofia, S., A subgrid-scale resistivity for magnetohydrodynamics (1994) Physics of Plasmas, 1, pp. 3016-3032A4 -

Citas:

---------- APA ----------
Graham, J.P., Holm, D., Mininni, P., Pouquet, A., Meyers J., Geurts B., Sagaut P.,..., Salvetti M.V. (2011) . The effect of subfilter-scale physics on regularization models. 2nd Workshop on Quality and Reliability of Large-Eddy Simulations, QLES 2009, 16, 411-420.
http://dx.doi.org/10.1007/978-94-007-0231-8_37
---------- CHICAGO ----------
Graham, J.P., Holm, D., Mininni, P., Pouquet, A., Meyers J., Geurts B., et al. "The effect of subfilter-scale physics on regularization models" . 2nd Workshop on Quality and Reliability of Large-Eddy Simulations, QLES 2009 16 (2011) : 411-420.
http://dx.doi.org/10.1007/978-94-007-0231-8_37
---------- MLA ----------
Graham, J.P., Holm, D., Mininni, P., Pouquet, A., Meyers J., Geurts B., et al. "The effect of subfilter-scale physics on regularization models" . 2nd Workshop on Quality and Reliability of Large-Eddy Simulations, QLES 2009, vol. 16, 2011, pp. 411-420.
http://dx.doi.org/10.1007/978-94-007-0231-8_37
---------- VANCOUVER ----------
Graham, J.P., Holm, D., Mininni, P., Pouquet, A., Meyers J., Geurts B., et al. The effect of subfilter-scale physics on regularization models. ERCOFTAC Ser. 2011;16:411-420.
http://dx.doi.org/10.1007/978-94-007-0231-8_37