Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Förster resonance energy transfer (FRET) is applied extensively in all fields of biological research and technology, generally as a 'nanoruler' with a dynamic range corresponding to the intramolecular and intermolecular distances characterizing the molecular structures that regulate cellular function. The complex underlying network of interactions reflects elementary reactions operating under strict spatio-temporal control: binding, conformational transition, covalent modification and transport. FRET imaging provides information about all these molecular processes with high specificity and sensitivity via probes expressed by or introduced from the external medium into the cell, tissue or organism. Current approaches and developments in the field are discussed with emphasis on formalism, probes and technical implementation. © 2006 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Imaging molecular interactions in living cells by FRET microscopy
Autor:Jares-Erijman, E.A.; Jovin, T.M.
Filiación:Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, 1428 Buenos Aires, Argentina
Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, am Fassberg 11, 37077 Göttingen, Germany
Palabras clave:cell function; conformational transition; fluorescence resonance energy transfer; molecular interaction; protein modification; protein transport; review; Cells; Fluorescence Resonance Energy Transfer; Proteins; Quantum Dots; Quantum Theory; Sensitivity and Specificity
Año:2006
Volumen:10
Número:5
Página de inicio:409
Página de fin:416
DOI: http://dx.doi.org/10.1016/j.cbpa.2006.08.021
Título revista:Current Opinion in Chemical Biology
Título revista abreviado:Curr. Opin. Chem. Biol.
ISSN:13675931
CODEN:COCBF
CAS:Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13675931_v10_n5_p409_JaresErijman

Referencias:

  • Jares-Erijman, E.A., Jovin, T.M., FRET imaging (2003) Nat Biotechnol, 21, pp. 1387-1395
  • Giepmans, B.N., Adams, S.R., Ellisman, M.H., Tsien, R.Y., The fluorescent toolbox for assessing protein location and function (2006) Science, 312, pp. 217-224. , A comprehensive outline of molecular design platforms for assessing structure and function. It runs the probe gamut from organic dyes through fluorescent proteins to quantum dots. FRET is, in many cases, the underlying detection principle
  • De Schryver, F.C., Vosch, T., Cotlet, M., van der Auweraer, M., Mülen, K., Hofkens, J., Energy dissipation in multichromophoric single dendrimers (2005) Acc Chem Res, 38, pp. 514-522
  • (2005) Molecular Imaging: FRET Microscopy and Spectroscopy, , Periasamy A., and Day R.N. (Eds), Oxford University Press. A compendium of excellent chapters by FRET experts, which we do not cite individually because of space limitations. Most of the topics of the present review are covered. Co-edited by one of the most prolific writers in the FRET field
  • Bunt, G., Wouters, F.S., Visualization of molecular activities inside living cells with fluorescent labels (2004) Int Rev Cytol, 237, pp. 205-277
  • Spector, D.L., Goldman, R.D., (2004) Live Cell Imaging: A Laboratory Manual, , Cold Spring Harbor Laboratory Press
  • Chapman, S., Oparka, K.J., Roberts, A.G., New tools for in vivo fluorescence tagging (2005) Curr Opin Plant Biol, 8, pp. 565-573
  • Nagy, P., Vereb, G., Post, J.N., Friedländer, E., Szöllösi, J., Novel single cell fluorescence approaches in the investigation of signaling at the cellular level (2005) Biophysical Aspects of Transmembrane Signaling. Springer Series in Biophysics, vol 8, pp. 33-70. , Damjanovich S. (Ed), Springer. An excellent review on all quantitative methodologies available for studying cellular signaling from one of the laboratories most active in this area
  • Ballou, B., Ernst, L.A., Waggoner, A.S., Fluorescence imaging of tumors in vivo (2005) Curr Med Chem, 12, pp. 795-805
  • Zimmermann, T., Spectral imaging and linear unmixing in light microscopy (2005) Adv Biochem Eng Biotechnol, 95, pp. 245-265
  • Tsien, R.Y., Building and breeding molecules to spy on cells and tumors (2005) FEBS Lett, 579, pp. 927-932
  • Majoul, I., Jia, Y., Duden, R., Practical fluorescence resonance energy transfer or molecular nanobioscopy of living cells (2006) Handbook of Biological Confocal Microscopy, 3rd Ed, pp. 788-808. , Pawley J.B. (Ed), Springer Science & Business Media
  • Kiyokawa, E., Hara, S., Nakamura, T., Matsuda, M., Fluorescence (Forster) resonance energy transfer imaging of oncogene activity in living cells (2006) Cancer Sci, 97, pp. 8-15
  • Yan, Y., Marriott, G., Analysis of protein interactions using fluorescence technologies (2003) Curr Opin Chem Biol, 7, pp. 635-640
  • Fan, C., Plaxco, K.W., Heeger, A.J., Biosensors based on binding-modulated donor-acceptor distances (2005) Trends Biotechnol, 23, pp. 186-192
  • Zal, T., Gascoigne, N.R., Photobleaching-corrected FRET efficiency imaging of live cells (2004) Biophys J, 86, pp. 3923-3939
  • Mattheyses, A.L., Hoppe, A.D., Axelrod, D., Polarized fluorescence resonance energy transfer microscopy (2004) Biophys J, 87, pp. 2787-2797
  • Muller, B.K., Zaychikov, E., Brauchle, C., Lamb, D.C., Pulsed interleaved excitation (2005) Biophys J, 89, pp. 3508-3522
  • Lee, N.K., Kapanidis, A.N., Wang, Y., Michalet, X., Mukhopadhyay, J., Ebright, R.H., Weiss, S., Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation (2005) Biophys J, 88, pp. 2939-2953. , ALEX provides the means for extracting a full parametric data set for 'FRETing' fluorophores. The donor and acceptor are excited with alternating pulses
  • Enderlein, J., Gregor, I., Patra, D., Dertinger, T., Kaupp, U.B., Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration (2005) ChemPhysChem, 6, pp. 2324-2336
  • Eggeling, C., Widengren, J., Brand, L., Schaffer, J., Felekyan, S., Seidel, C.A., Analysis of photobleaching in single-molecule multicolor excitation and Forster resonance energy transfer measurements (2006) J Phys Chem A, 110, pp. 2979-2995
  • Clayton, A.H., Klonis, N., Cody, S.H., Nice, E.C., Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells (2005) Eur Biophys J, 34, pp. 82-90
  • Horváth, G., Petrás, M., Szentesi, G., Fábián, A., Park, J.W., Vereb, G., Szöllösi, J., Selecting the right fluorophores and flow cytometer for fluorescence resonance energy transfer measurements (2005) Cytometry A, 65, pp. 148-157
  • Waggoner, A., Fluorescent labels for proteomics and genomics (2006) Curr Opin Chem Biol, 10, pp. 62-66
  • Salama, G., Choi, B.R., Azour, G., Lavasani, M., Tumbev, V., Salzberg, B.M., Patrick, M.J., Waggoner, A.S., Properties of new, long-wavelength, voltage-sensitive dyes in the heart (2005) J Membr Biol, 208, pp. 125-140. , The latest contribution from a laboratory pioneering the synthesis and use of new fluorophores, in this case showing improved voltage sensitivity for studies of cardiac function. This special issues of J Membr Biol has other articles on neuronal imaging
  • Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., Miyawaki, A., A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy (2006) Nat Biotechnol, 24, pp. 577-581
  • Jovin, T.M., Lidke, D.S., Post, J.N., Dynamic and static fluorescence anisotropy in biological microscopy (rFLIM and emFRET) (2004) Proc SPIE, 5323, pp. 1-12
  • Marushchak, D., Johansson, L.B.-A., On the quantitative treatment of donor-donor energy migration in regularly aggregated proteins (2005) J Fluoresc, 15, pp. 797-803
  • Ganesan, S., Ameerbeg, S.M., Ng, T.T.C., Vojnovic, B., Wouters, F.S., A dark yellow fluorescent protein (YFP)-based Resonance Energy Accepting Chromoprotein (REACh) for FRET with GFP (2006) Proc Natl Acad Sci USA, 103, pp. 4089-4094
  • Sauer, M., Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging (2005) Proc Natl Acad Sci USA, 102, pp. 9433-9434
  • Patterson, G.H., Lippincott-Schwartz, J., Selective photolabeling of proteins using photoactivatable GFP (2004) Methods, 32, pp. 445-450
  • Ando, R., Mizuno, H., Miyawaki, A., Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting (2004) Science, 306, pp. 1370-1373. , A tour de force of molecular engineering resulting in a visible fluorescent protein that can undergo repeated cycles of photochromic interconversion between dark and emitting states. Predestined for pcFRET applications
  • Valentin, G., Verheggen, C., Piolot, T., Neel, H., Coppey-Moisan, M., Bertrand, E., Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments (2005) Nat Methods, 2, p. 801
  • Tsutsui, H., Karasawa, S., Shimizu, H., Nukina, N., Miyawaki, A., Semi-rational engineering of a coral fluorescent protein into an efficient highlighter (2005) EMBO Rep, 6, pp. 233-238
  • Sinnecker, D., Voigt, P., Hellwig, N., Schaefer, M., Reversible photobleaching of enhanced green fluorescent proteins (2005) Biochemistry, 44, pp. 7085-7094
  • Post, J.N., Lidke, K.A., Rieger, B., Arndt-Jovin, D.J., One- and two-photon photoactivation of a paGFP-fusion protein, a phototoxicity study in live Drosophila embryos (2005) FEBS Lett, 579, pp. 325-330
  • Souslova, E.A., Chudakov, D.M., Photoswitchable cyan fluorescent protein as a FRET donor (2006) Microsc Res Tech, 69, pp. 207-209
  • Mutoh, T., Miyata, T., Kashiwagi, S., Miyawaki, A., Ogawa, M., Dynamic behavior of individual cells in developing organotypic brain slices revealed by the photoconvertable protein Kaede (2006) Exp Neurol, 200, pp. 430-437
  • Takakusa, H., Kikuchi, K., Urano, Y., Kojima, H., Nagano, T., A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral (2003) Chemistry, 9, pp. 1479-1485
  • Jares-Erijman, E.A., Giordano, L., Spagnuolo, C., Kawior, J., Vermeij, R.J., Jovin, T.M., Photochromic Fluorescence Resonance Energy Transfer (pcFRET): formalism, implementation, and perspectives (2004) Proc SPIE, 5323, pp. 13-26
  • Jares-Erijman, E.A., Giordano, L., Spagnuolo, C., Lidke, K.A., Jovin, T.M., Imaging quantum dots switched on and off by photochromic Fluorescence Resonance Energy Transfer (pcFRET) (2005) Mol Cryst Liq Cryst, 430, pp. 257-265
  • Sakata, T., Yan, Y., Marriott, G., Family of site-selective molecular optical switches (2005) J Org Chem, 70, pp. 2009-2013
  • Hofmann, M., Eggeling, C., Jakobs, S., Hell, S.W., Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins (2005) Proc Natl Acad Sci USA, 102, pp. 17565-17569
  • Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing (2005) Nat Mater, 4, pp. 435-446
  • Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics (2005) Science, 307, pp. 538-544. , A broad-ranging coverage of QD properties and applications by pioneers in the field
  • Pinaud, F., Michalet, X., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Iyer, G., Weiss, S., Advances in fluorescence imaging with quantum dot bio-probes (2006) Biomaterials, 27, pp. 1679-1687
  • Arndt-Jovin, D.J., Lopez-Quintela, M.A., Lidke, D.S., Rodriguez, M.J., Santos, F.M., Lidke, K.A., Hagen, G.M., Jovin, T.M., In vivo cell imaging with semiconductor quantum dots and noble-metal nanodots (2006) Proc SPIE, 6096, pp. 60960P1-60960P10
  • Lidke, K.A., Rieger, B., Jovin, T.M., Heintzmann, R., Superresolution by localization of quantum dots using blinking statistics (2005) Opt Express, 13, pp. 7052-7062
  • Hohng, S., Ha, T., Single-molecule quantum-dot fluorescence resonance energy transfer (2005) ChemPhysChem, 6, pp. 956-960
  • Clapp, A.R., Medintz, I.L., Mattoussi, H., Forster resonance energy transfer investigations using quantum-dot fluorophores (2006) ChemPhysChem, 7, pp. 47-57. , This group has generated numerous ingenious bioassays based on QDs as FRET donors
  • Wang, L., Tan, W., Multicolor FRET silica nanoparticles by single wavelength excitation (2006) Nano Lett, 6, pp. 84-88
  • Bene, L., Szentesi, G., Mátyus, L., Gáspár, R., Damjanovich, S., Nanoparticle energy transfer on the cell surface (2005) J Mol Recognit, 18, pp. 236-253
  • Steinmeyer, R., Noskov, A., Krasel, C., Weber, I., Dees, C., Harms, G.S., Improved fluorescent proteins for single-molecule research in molecular tracking and co-localization (2005) J Fluoresc, 15, pp. 707-721
  • Shaner, N.C., Steinbach, P.A., Tsien, R.Y., A guide to choosing fluorescent proteins (2005) Nat Methods, 2, pp. 905-909
  • Ward, T.H., Lippincott-Schwartz, J., The uses of green fluorescent protein in mammalian cells (2006) Methods Biochem Anal, 47, pp. 305-337
  • Shimozono, S., Hosoi, H., Mizuno, H., Fukano, T., Tahara, T., Miyawaki, A., Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer (2006) Biochemistry, 45, pp. 6267-6271
  • Miller, L.W., Cornish, V.W., Selective chemical labeling of proteins in living cells (2005) Curr Opin Chem Biol, 9, pp. 56-61
  • Martin, B.R., Giepmans, B.N., Adams, S.R., Tsien, R.Y., Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity (2005) Nat Biotechnol, 23, pp. 1308-1314. , Optimization of peptide sequences for biarsenicals targeted to a tetracysteine core. This expression system is gaining in favor due to these improvements as well as those in the biarsenical probes
  • Hoffmann, C., Gaietta, G., Bunemann, M., Adams, S.R., Oberdorff-Maass, S., Behr, B., Vilardaga, J.P., Lohse, M.J., A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells (2005) Nat Methods, 2, pp. 171-176
  • Geho, D.H., Jones, C.D., Petricoin, E.F., Liotta, L.A., Nanoparticles: potential biomarker harvesters (2006) Curr Opin Chem Biol, 10, pp. 56-61
  • Howarth, M., Takao, K., Hayashi, Y., Ting, A.Y., Targeting quantum dots to surface proteins in living cells with biotin ligase (2005) Proc Natl Acad Sci USA, 102, pp. 7583-7588
  • Juillerat, A., Heinis, C., Sielaff, I., Barnikow, J., Jaccard, H., Kunz, B., Terskikh, A., Johnsson, K., Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells (2005) ChemBioChem, 6, pp. 1263-1269
  • Meyer, B.H., Martinez, K.L., Segura, J.M., Pascoal, P., Hovius, R., George, N., Johnsson, K., Vogel, H., Covalent labeling of cell-surface proteins for in-vivo FRET studies (2006) FEBS Lett, 580, pp. 1654-1658
  • Lamla, T., Erdmann, V.A., The Nano-tag, a streptavidin-binding peptide for the purification and detection of recombinant proteins (2004) Protein Expr Purif, 33, pp. 39-47
  • Chen, I., Howarth, M., Lin, W., Ting, A.Y., Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase (2005) Nat Methods, 2, pp. 99-104
  • Jäger, M., Nir, E., Weiss, S., Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification (2006) Protein Sci, 15, pp. 640-646
  • Lin, C.W., Ting, A.Y., Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells (2006) J Am Chem Soc, 128, pp. 4542-4543
  • Meredith, G.D., Wu, H.Y., Allbritton, N.L., Targetted protein functionalization using his-tags (2004) Bioconjug Chem, 15, pp. 969-982
  • Yeo, D.S., Srinivasan, R., Chen, G.Y., Yao, S.Q., Expanded utility of the native chemical ligation reaction (2004) Chemistry, 10, pp. 4664-4672
  • Jovin, T.M., Lidke, D.S., Jares-Erijman, E.A., Fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) (2005) From Cells to Proteins: Imaging Nature Across Dimensions. Proc NATO ASI, pp. 209-216. , Evangelista V., Barsanti L., Passarelli V., and Gualteri P. (Eds), Springer
  • Thaler, C., Koushik, S.V., Blank, P.S., Vogel, S.S., Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer (2005) Biophys J, 89, pp. 2736-2749
  • Wallrabe, H., Periasamy, A., Imaging protein molecules using FRET and FLIM microscopy (2005) Curr Opin Biotechnol, 16, pp. 19-27
  • van Munster, E.B., Kremers, G.J., Adjobo-Hermans, M.J., Gadella Jr., T.W.J., Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching (2005) J Microsc, 218, pp. 253-262
  • Pfleger, K.D.G., Eidne, K.A., Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET) (2006) Nat Methods, 3, p. 165
  • Esposito, A., Wouters, F.S., Fluorescence Lifetime Imaging Microscopy (2004) Curr Protocols Cell Biol, pp. 4.14.11-14.14.30
  • Duncan, R.R., Bergmann, A., Cousin, M.A., Apps, D.K., Shipston, M.J., Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells (2004) J Microsc, 215, pp. 1-12
  • Esposito, A., Gerritsen, H.C., Oggier, T., Lustenberger, F., Wouters, F.S., Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics (2006) J Biomed Opt, 11, p. 034016. , A significant breakthrough in widefield detectors and other technology for FLIM
  • Esposito, A., Gerritsen, H.C., Wouters, F.S., Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis (2005) Biophys J, 89, pp. 4286-4299
  • Dumas, D., Stoltz, J.F., New tool to monitor membrane potential by FRET voltage sensitive dye (FRET-VSD) using spectral and fluorescence lifetime imaging microscopy (FLIM). Interest in cell engineering (2005) Clin Hemorheol Microcirc, 33, pp. 293-302
  • van Munster, E.B., Gadella Jr., T.W.J., Fluorescence lifetime imaging microscopy (FLIM) (2005) Adv Biochem Eng Biotechnol, 95, pp. 143-175. , An excellent overview of FLIM instrumentation and applications
  • Redford, G.I., Clegg, R.M., Polar plot representation for frequency-domain analysis of fluorescence lifetimes (2005) J Fluoresc, 15, pp. 805-815
  • Hanley, Q.S., Lidke, K.A., Heintzmann, R., Arndt-Jovin, D.J., Jovin, T.M., Fluorescence lifetime imaging in an optically sectioning programmable array microscope (PAM) (2005) Cytometry A, 67, pp. 112-118
  • Hanley, Q.S., Clayton, A.H., AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers (2005) J Microsc, 218, pp. 62-67
  • Matthews, D.R., Summers, H.D., Njoh, K., Errington, R.J., Smith, P.J., Barber, P., Ameer-Beg, S., Vojnovic, B., Technique for measurement of fluorescence lifetime by use of stroboscopic excitation and continuous-wave detection (2006) Appl Opt, 45, pp. 2115-2123
  • Waharte, F., Spriet, C., Heliot, L., Setup and characterization of a multiphoton FLIM instrument for protein-protein interaction measurements in living cells (2006) Cytometry A, 69, pp. 299-306
  • Hanley, Q.S., Ramkumar, V., An internal standardization procedure for spectrally resolved fluorescence lifetime imaging (2005) Appl Spectrosc, 59, pp. 261-266
  • Szentesi, G., Vereb, G., Horváth, G., Bodnar, A., Fábián, A., Matkó, J., Gáspár, R., Jenei, A., Computer program for analyzing donor photobleaching FRET image series (2005) Cytometry A, 67, pp. 119-128
  • Jares-Erijman, E.A., Spagnuolo, C., Giordano, L., Etchehon, M., Kawior, J., Mañalich-Arana, M., Bossi, M., Vermeij, R.J., Novel (bio)chemical and (photo)physical probes for imaging live cells. (2004) Supramolecular Structure and Function vol 8, pp. 99-118. , Pifat-Mrzljak G. (Ed), Kluwer
  • Lidke, K.A., Rieger, B., Lidke, D.S., Jovin, T.M., The role of photon statistics in fluorescence anisotropy imaging (2005) IEEE Trans Image Process, 14, pp. 1237-1245
  • Cohen-Kashi, M., Namer, Y., Deutsch, M., Fluorescence resonance energy transfer imaging via fluorescence polarization measurement (2006) J Biomed Opt, 11, p. 034015
  • Rizzo, M.A., Piston, D.W., High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy (2005) Biophys J, 88, pp. L14-L16
  • Squire, A., Verveer, P.J., Rocks, O., Bastiaens, P.I., Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells (2004) J Struct Biol, 147, pp. 62-69
  • Sapsford, K.E., Berti, L., Medintz, I.L., Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations (2006) Angew Chem Int Ed Engl, 45, pp. 4562-4589. , This survey with over 300 references covers the use of nanocrystals, nanoparticles, polymers and genetically encoded proteins in FRET measurements
  • Ojida, A., Honda, K., Shinmi, D., Kiyonaka, S., Mori, Y., Hamachi, I., Oligo-asp tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins (2006) J Am Chem Soc, , 10.1021/ja061860;

Citas:

---------- APA ----------
Jares-Erijman, E.A. & Jovin, T.M. (2006) . Imaging molecular interactions in living cells by FRET microscopy. Current Opinion in Chemical Biology, 10(5), 409-416.
http://dx.doi.org/10.1016/j.cbpa.2006.08.021
---------- CHICAGO ----------
Jares-Erijman, E.A., Jovin, T.M. "Imaging molecular interactions in living cells by FRET microscopy" . Current Opinion in Chemical Biology 10, no. 5 (2006) : 409-416.
http://dx.doi.org/10.1016/j.cbpa.2006.08.021
---------- MLA ----------
Jares-Erijman, E.A., Jovin, T.M. "Imaging molecular interactions in living cells by FRET microscopy" . Current Opinion in Chemical Biology, vol. 10, no. 5, 2006, pp. 409-416.
http://dx.doi.org/10.1016/j.cbpa.2006.08.021
---------- VANCOUVER ----------
Jares-Erijman, E.A., Jovin, T.M. Imaging molecular interactions in living cells by FRET microscopy. Curr. Opin. Chem. Biol. 2006;10(5):409-416.
http://dx.doi.org/10.1016/j.cbpa.2006.08.021