Artículo

Tribelli, P.M.; Rossi, L.; Ricardi, M.M.; Gomez-Lozano, M.; Molin, S.; Raiger Iustman, L.J.; Lopez, N.I. "Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach" (2018) Journal of Industrial Microbiology and Biotechnology. 45(1):15-23
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dynamic spectrum of oxygen availability can be found in the environment. Pseudomonas extremaustralis, an Antarctic bacterium isolated from a pristine environment, is able to degrade diesel fuel and presents a wide microaerophilic metabolism. In this work RNA-deep sequence experiments were analyzed comparing the expression profile in aerobic and microaerophilic cultures. Interestingly, genes involved in alkane degradation, including alkB, were over-expressed in micro-aerobiosis in absence of hydrocarbon compounds. In minimal media supplemented with diesel fuel, n-alkanes degradation (C13–C19) after 7 days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments. © 2017, Society for Industrial Microbiology and Biotechnology.

Registro:

Documento: Artículo
Título:Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach
Autor:Tribelli, P.M.; Rossi, L.; Ricardi, M.M.; Gomez-Lozano, M.; Molin, S.; Raiger Iustman, L.J.; Lopez, N.I.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes, 2160, Buenos Aires, C1428EGA, Argentina
IQUIBICEN, CONICET, Buenos Aires, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
Palabras clave:Alkane degradation; alkB; Micro-aerobiosis; Pseudomonas extremaustralis; RNA-seq; alcohol dehydrogenase; aldehyde dehydrogenase; alkane; alkane 1 monooxygenase; diesel fuel; hydrocarbon; oxidoreductase; oxygen; RNA; rubredoxin; rubredoxine reductase; unclassified drug; aerobic metabolism; amino acid metabolism; argc gene; Article; azu gene; bacterial count; carbon source; cell viability; controlled study; degradation; denitrification; down regulation; flga gene; gene; gene expression; genetic organization; nonhuman; promoter region; Pseudomonas; Pseudomonas extremaustralis; reverse transcription polymerase chain reaction; RNA sequence; transcriptomics; upregulation
Año:2018
Volumen:45
Número:1
Página de inicio:15
Página de fin:23
DOI: http://dx.doi.org/10.1007/s10295-017-1987-z
Título revista:Journal of Industrial Microbiology and Biotechnology
Título revista abreviado:J. Ind. Microbiol. Biotechnol.
ISSN:13675435
CODEN:JIMBF
CAS:alcohol dehydrogenase, 9031-72-5; aldehyde dehydrogenase, 37353-37-0, 9028-86-8; alkane 1 monooxygenase, 9059-16-9; diesel fuel, 68334-30-5; oxidoreductase, 9035-73-8, 9035-82-9, 9037-80-3, 9055-15-6; oxygen, 7782-44-7; RNA, 63231-63-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13675435_v45_n1_p15_Tribelli

Referencias:

  • Alonso, H., Kleifeld, O., Yeheskel, A., Ong, P.C., Liu, Y.C., Stok, J.E., De Voss, J.J., Roujeinikova, A., Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB (2014) Biochem J, 460, pp. 283-293. , COI: 1:CAS:528:DC%2BC2cXnvFemtLs%3D, PID: 24646189
  • Alvarez-Ortega, C., Harwood, C.S., Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration (2007) Mol Microbiol, 65, pp. 153-165. , COI: 1:CAS:528:DC%2BD2sXnslyjt7o%3D, PID: 17581126
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66. , COI: 1:CAS:528:DC%2BD1cXhsFCgsL7N, PID: 18931822
  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Zagnitko, O., The RAST server: rapid annotations using subsystems technology (2008) BMC Genom, 9, p. 75
  • van Beilen, J.B., Funhoff, E.G., Alkane hydroxylases involved in microbial alkane degradation (2007) Appl Microbiol Biotechnol, 74, pp. 13-21. , COI: 1:CAS:528:DC%2BD2sXhtVansLg%3D, PID: 17216462
  • van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Röthlisberger, M., Witholt, B., Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes (2001) Microbiology, 147, pp. 1621-1630. , PID: 11390693
  • Berthe-Corti, L., Fetzner, S., Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions (2002) Acta Biotechnol, 22, pp. 299-336. , COI: 1:CAS:528:DC%2BD38XmsVagt7s%3D
  • Callaghan, A.V., Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins (2013) Front Microbiol, 4, p. 89. , PID: 23717304
  • Chayabutra, C., Ju, L.K., Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions (2000) Appl Environ Microbiol, 66, pp. 493-498. , COI: 1:CAS:528:DC%2BD3cXhtFerurw%3D, PID: 10653709
  • Conesa, A., Götz, S., Blast2GO: a comprehensive suite for functional analysis in plant genomics (2008) Int J Plant Genom
  • Dinamarca, M.A., Aranda-Olmedo, I., Puyet, A., Rojo, F., Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures (2003) J Bacteriol, 185, pp. 4772-4778. , COI: 1:CAS:528:DC%2BD3sXmt1GjsLY%3D, PID: 12896996
  • Eschbach, M., Schreiber, K., Trunk, K., Buer, J., Jahn, D., Schobert, M., Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation (2004) J Bacteriol, 186, pp. 4596-4604. , COI: 1:CAS:528:DC%2BD2cXmtVems7g%3D, PID: 15231792
  • Fisher, R., (1934) Statistical methods for research workers, , Oliver and Boyd, Edinburgh
  • Fonseca, P., Moreno, R., Rojo, F., Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses (2011) Environ Microbiol Rep, 3, pp. 329-339. , COI: 1:CAS:528:DC%2BC3MXntlKmsbs%3D, PID: 23761279
  • Gómez-Lozano, M., Marvig, R.L., Molin, S., Long, K.S., Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa (2012) Environ Microbiol, 14, pp. 2006-2016. , PID: 22533370
  • Gunasekera, T.S., Striebich, R.C., Mueller, S.S., Strobel, E.M., Ruiz, O.N., Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel (2013) Environ Sci Technol, 47, pp. 13449-13458. , COI: 1:CAS:528:DC%2BC3sXhs1ygs7bI, PID: 24164330
  • Hernández-Arranz, S., Moreno, R., Rojo, F., The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy (2013) Environ Microbiol, 15, pp. 227-241. , PID: 22925411
  • Kok, M., Oldenhuis, R., Van Der Linden, M.P.G., Raatjes, P., Kingma, J., Van Lelyveld, P.H., Witholt, B., The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression (1989) J Biol Chem, 264, pp. 5435-5441. , COI: 1:CAS:528:DyaL1MXlsVOmtLg%3D, PID: 2647718
  • Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Witholt, B., Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates (1988) Appl Environ Microbiol, 54, pp. 2924-2932. , COI: 1:CAS:528:DyaL1MXptFOqtQ%3D%3D, PID: 16347790
  • Larionov, A., Krause, A., Miller, W., A standard curve based method for relative real time PCR data processing (2005) BMC Bioinform, 6, p. 62
  • Liu, H., Liang, R., Tao, F., Ma, C., Liu, Y., Liu, X., Liu, J., Genome sequence of Pseudomonas aeruginosa strain SJTD-1, a bacterium capable of degrading long-chain alkanes and crude oil (2012) J Bacteriol, 194, pp. 4783-4784. , COI: 1:CAS:528:DC%2BC38Xht1GhsbzP, PID: 22887679
  • Liu, H., Sun, W.-B., Liang, R.-B., Huang, L., Hou, J.-L., Liu, J.-H., iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: a global response to n-octadecane induced stress (2015) J Proteom, 123, pp. 14-28. , COI: 1:CAS:528:DC%2BC2MXmsVerurk%3D
  • López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Põtter, M., Steinbüchel, A., Méndez, B.S., Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an antarctic environment (2009) Curr Microbiol, 59, pp. 514-519. , PID: 19688380
  • Mann, H.B., Whitney, D.R., On a test of whether one of two random variables is stochastically larger than the other (1947) Ann Math Stat, 18 (1), pp. 50-60
  • Martínez-Antonio, A., Collado-Vides, J., Identifying global regulators in transcriptional regulatory networks in bacteria (2003) Curr Opin Microbiol, 6, pp. 482-489. , PID: 14572541
  • Mason, O.U., Hazen, T.C., Borglin, S., Chain, P.S., Dubinsky, E.A., Fortney, J.L., Han, J., Jansson, J.K., Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill (2012) ISME J, 6, pp. 1715-1727. , COI: 1:CAS:528:DC%2BC38Xht1GjtLbL, PID: 22717885
  • McClure, R., Balasubramanian, D., Sun, Y., Bobrovskyy, M., Sumby, P., Genco, C.A., Vanderpool, C.K., Tjaden, B., Computational analysis of bacterial RNA-Seq data (2013) Nucleic Acids Res, 41. , COI: 1:CAS:528:DC%2BC3sXht1CktLnK, PID: 23716638
  • Münch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., Jahn, D., Virtual footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes (2005) Bioinformatics, 21, pp. 4187-4189. , PID: 16109747
  • Rodriguez, L.M., Overholt, W.A., Hagan, C., Huettel, M., Kostka, J.E., Konstantinidis, K.T., Microbial community successional patterns in beach sands impacted by the deepwater horizon oil spill (2015) ISME J, 9, pp. 1928-1940. , PID: 25689026
  • Rojo, F., Specificity at the end of the tunnel: understanding substrate length discrimination by the AlkB Alkane hydroxylase (2005) J Bacteriol, 187, pp. 19-22. , COI: 1:CAS:528:DC%2BD2MXmsFWl, PID: 15601683
  • Rojo, F., Degradation of alkanes by bacteria: minireview (2009) Environ Microbiol, 11, pp. 2477-2490. , COI: 1:CAS:528:DC%2BD1MXhtlKisLzP, PID: 19807712
  • Sawers, R.G., Identification and molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli (1991) Mol Microbiol, 5, pp. 1469-1481. , COI: 1:CAS:528:DyaK38XkvVCgtr4%3D, PID: 1787797
  • Schirmer, A., Rude, M.A., Li, X., Popova, E., Del Cardayre, S.B., Microbial biosynthesis of alkanes (2010) Science, 329, pp. 559-562. , COI: 1:CAS:528:DC%2BC3cXptlCltLc%3D, PID: 20671186
  • Smits, T.H.M., Witholt, B., van Beilen, J.B., Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa (2003) Antonie Van Leeuwenhoek, 84, pp. 193-200. , COI: 1:CAS:528:DC%2BD3sXnslarurw%3D, PID: 14574114
  • Tribelli, P.M., Hay, A.G., López, N.I., The global anaerobic regulator Anr, is involved in cell attachment and aggregation influencing the first stages of biofilm development in Pseudomonas extremaustralis (2013) PLoS One, 8. , COI: 1:CAS:528:DC%2BC3sXhs1OisLvI, PID: 24146909
  • Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J., Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis (2012) Biodegradation, 23, pp. 645-651. , COI: 1:CAS:528:DC%2BC38XhtFGlt77F, PID: 22302594
  • Tribelli, P.M., Méndez, B.S., López, N.I., Oxygen-sensitive global regulator, anr, is involved in the biosynthesis of poly(3-Hydroxybutyrate) in Pseudomonas extremaustralis (2010) J Mol Microbiol Biotechnol, 19, pp. 180-188. , COI: 1:CAS:528:DC%2BC3MXmsVGltQ%3D%3D, PID: 21042031
  • Tribelli, P.M., Nikel, P.I., Oppezzo, O.J., López, N.I., Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis (2013) Microbiology, 159, pp. 259-268. , COI: 1:CAS:528:DC%2BC3sXjvFOhtbw%3D, PID: 23223440
  • Tribelli, P.M., Venero, E.C.S., Ricardi, M.M., Gómez-Lozano, M., Raiger Iustman, L.J., Molin, S., López, N.I., Novel essential role of ethanol oxidation genes at low temperature revealed by transcriptome analysis in the antarctic bacterium Pseudomonas extremaustralis (2015) PLoS One, 10. , PID: 26671564
  • Trunk, K., Benkert, B., Quäck, N., Münch, R., Scheer, M., Garbe, J., Jänsch, L., Jahn, D., Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons (2010) Environ Microbiol, 12, pp. 1719-1733. , COI: 1:CAS:528:DC%2BC3cXptFOgs7s%3D, PID: 20553552
  • Ugidos, A., Morales, G., Rial, E., Williams, H.D., Rojo, F., The coordinate regulation of multiple terminal oxidases by the Pseudomonas putida ANR global regulator (2008) Environ Microbiol, 10, pp. 1690-1702. , COI: 1:CAS:528:DC%2BD1cXptVKgsb8%3D, PID: 18341582
  • Wentzel, A., Ellingsen, T.E., Kotlar, H.K., Zotchev, S.B., Throne-Holst, M., Bacterial metabolism of long-chain n-alkanes (2007) Appl Microbiol Biotechnol, 76, pp. 1209-1221. , COI: 1:CAS:528:DC%2BD2sXhtVGmt7%2FN, PID: 17673997
  • Yamada, T., Letunic, I., Okuda, S., Kanehisa, M., Bork, P., IPath2.0: interactive pathway explorer (2011) Nucleic Acids Res, 39, pp. W412-W415. , COI: 1:CAS:528:DC%2BC3MXosVOntLY%3D, PID: 21546551

Citas:

---------- APA ----------
Tribelli, P.M., Rossi, L., Ricardi, M.M., Gomez-Lozano, M., Molin, S., Raiger Iustman, L.J. & Lopez, N.I. (2018) . Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. Journal of Industrial Microbiology and Biotechnology, 45(1), 15-23.
http://dx.doi.org/10.1007/s10295-017-1987-z
---------- CHICAGO ----------
Tribelli, P.M., Rossi, L., Ricardi, M.M., Gomez-Lozano, M., Molin, S., Raiger Iustman, L.J., et al. "Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach" . Journal of Industrial Microbiology and Biotechnology 45, no. 1 (2018) : 15-23.
http://dx.doi.org/10.1007/s10295-017-1987-z
---------- MLA ----------
Tribelli, P.M., Rossi, L., Ricardi, M.M., Gomez-Lozano, M., Molin, S., Raiger Iustman, L.J., et al. "Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach" . Journal of Industrial Microbiology and Biotechnology, vol. 45, no. 1, 2018, pp. 15-23.
http://dx.doi.org/10.1007/s10295-017-1987-z
---------- VANCOUVER ----------
Tribelli, P.M., Rossi, L., Ricardi, M.M., Gomez-Lozano, M., Molin, S., Raiger Iustman, L.J., et al. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. J. Ind. Microbiol. Biotechnol. 2018;45(1):15-23.
http://dx.doi.org/10.1007/s10295-017-1987-z