Artículo

Bustamante, J.P.; Szretter, M.E.; Sued, M.; Martí, M.A.; Estrin, D.A.; Boechi, L. "A quantitative model for oxygen uptake and release in a family of hemeproteins" (2016) Bioinformatics. 32(12):1805-1813
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Motivation: Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. Results: We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. © 2016 The Author 2016.

Registro:

Documento: Artículo
Título:A quantitative model for oxygen uptake and release in a family of hemeproteins
Autor:Bustamante, J.P.; Szretter, M.E.; Sued, M.; Martí, M.A.; Estrin, D.A.; Boechi, L.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad De Buenos Aires, Argentina
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Depto. de Quim. Biol. e Inst. de Quimica Biologica de la Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:hemoprotein; ligand; oxygen; truncated hemoglobin; kinetics; metabolism; Hemeproteins; Kinetics; Ligands; Oxygen; Truncated Hemoglobins
Año:2016
Volumen:32
Número:12
Página de inicio:1805
Página de fin:1813
DOI: http://dx.doi.org/10.1093/bioinformatics/btw083
Título revista:Bioinformatics
Título revista abreviado:Bioinformatics
ISSN:13674803
CODEN:BOINF
CAS:oxygen, 7782-44-7; Hemeproteins; Ligands; Oxygen; Truncated Hemoglobins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13674803_v32_n12_p1805_Bustamante

Referencias:

  • Bidon-Chanal, A., Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N (2006) Proteins, 64, pp. 457-464
  • Boechi, L., Structural determinants of ligand migration in Mycobacterium tuberculosis truncated hemoglobin O (2008) Proteins, 73, pp. 372-379
  • Bonamore, A., A novel thermostable hemoglobin from the actinobacterium Thermobifida fusca (2005) FEBS J., 272, pp. 4189-4201
  • Boron, I., Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules (2015) F1000Res., 4, p. 22
  • Brunori, M., Structural dynamics of myoglobin (2000) Biophys. Chem., 86, pp. 221-230
  • Brunori, M., The role of cavities in protein dynamics: Crystal structure of a photolytic intermediate of a mutant myoglobin (2000) Proc. Natl Acad. Sci. U. S. A., 97, pp. 2058-2063
  • Bustamante, J.P., Ligand uptake modulation by internal water molecules and hydrophobic cavities in hemoglobins (2014) J. Phys. Chem. B, 118, pp. 1234-1245
  • Bustamante, J.P., Evolutionary and functional relationships in the truncated hemoglobin family (2016) PLoS Comp. Biol., 12, p. e1004701
  • Capece, L., Small ligand-globin interactions: Reviewing lessons derived from computer simulation (2013) Biochim. Biophys. Acta, 1834, pp. 1722-1738
  • Cazade, P.A., Meuwly, M., Oxygen migration pathways in NObound truncated hemoglobin (2012) Chem. Phys. Chem., 13, pp. 4276-4286
  • Chodera, J., Alchemical free energy methods for drug discovery: Progress and challenges (2011) Curr. Opin. Struct. Biol., 21, pp. 150-160
  • Cohen, J., Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin (2006) Biophys. J., 91, pp. 1844-1857
  • Cohen, J., Finding gas migration pathways in proteins using implicit ligand sampling (2008) Methods Enzymol., 437, pp. 439-457
  • Couture, M., A cooperative oxygen-binding hemoglobin from Mycobacteriumtuberculosis (1999) Proc.Natl Acad. Sci.U. S. A., 96, pp. 11223-11228
  • Couture, M., Structural investigations of the hemoglobin of the cyanobacterium Synechocystis PCC6803 reveal a unique distal heme pocket (2000) Eur. J. Biochem., 267, pp. 4770-4780
  • Das, T., Ligand binding in the ferric and ferrous states of paramecium hemoglobin (2000) Biochemistry, 39, pp. 14330-14340
  • Dinner, A., Understanding protein folding via free-energy surfaces from theory and experiment (2000) Trends Biochem. Sci., 25, pp. 331-339
  • Elber, R., Ligand diffusion in globins: Simulations versus experiment (2010) Curr. Opin. Struct. Biol., 20, pp. 162-167
  • Forti, F., Ligand migration in Methanosarcina acetivorans protoglobin: Effects of ligand binding and Dimeric assembly (2011) J. Phys. Chem. B, 115, pp. 13771-13780
  • Franzen, S., Spin-dependent mechanism for diatomic ligand binding to heme (2002) Proc. Natl Acad. Sci. U. S. A, 99, pp. 16754-16759
  • Giangiacomo, L., The truncated oxygen-avid hemoglobin from Bacillus subtilis: X-ray structure and ligand binding properties (2005) J. Biol. Chem., 280, pp. 9192-9202
  • Giordano, D., Ligand and proton-linked conformational changes of the ferrous 2/2 hemoglobin of Pseudoalteromonas haloplanktis TAC125 (2011) IUBMB Life, 63, pp. 566-573
  • Giordano, D., Structural flexibility of the heme cavity in the coldadapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromas haloplanktis TAC125 (2015) FEBS J., 282, pp. 2948-2965
  • Goldbeck, R., Water and ligand entry in myoglobin: Assessing the speed and extent of heme pocket hydration after CO photodissociation (2006) Proc. Natl Acad. Sci. U. S. A, 103, pp. 1254-1259
  • Guallar, V., Ligand migration in the truncated hemoglobin-II from Mycobacterium tuberculosis: The role of G8 tryptophan (2009) J. Biol. Chem., 284, pp. 3106-3116
  • Hoy, J.A., The crystal structure of synechocystis hemoglobin with a covalent heme linkage (2004) J. Biol. Chem., 279, pp. 16535-16542
  • Ilari, A., Crystal structure and ligand binding properties of the truncated hemoglobin from Geobacillus stearothermophilus (2007) Arch. Biochem. Biophys., 457, pp. 85-94
  • Kepp, K.P., O2 binding to heme is strongly facilitated by near-degeneracy of electronic states (2013) ChemPhysChem, 14, pp. 3551-3558
  • Kutner, M., (2005) Applied Linear Statistical Models, , 5th edn. McGraw Hill,Irwin
  • Lama, A., Role of pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis (2009) J. Biol. Chem., 284, pp. 14457-14468
  • Laverman, L., Ford, P., Mechanistic studies of nitric oxide reactions with water soluble iron(II), cobalt(II), and iron(III) porphyrin complexes in aqueous solutions: Implications for biological activity (2001) J. Am. Chem. Soc., 123, pp. 11614-11622
  • Laverman, L., A dissociative mechanism for reactions of nitric oxide with water soluble iron(III) porphyrins (1997) J. Am. Chem. Soc., 119, pp. 12663-12664
  • Lu, C., Structural and functional properties of a truncated hemoglobin from a food-borne pathogen Campylobacter jejuni (2007) J. Biol. Chem., 282, pp. 13627-13636
  • Marcelli, A., Following ligand migration pathways from picoseconds to milliseconds in type II truncated hemoglobin from Thermobifida fusca (2012) PLoS One, 7, p. e39884
  • Markovitch, O., Agmon, N., Structure and energetics of the hydronium hydration shells (2007) J. Phys. Chem. A, 111, pp. 2253-2256
  • Marti, M.A., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J. Inorg. Biochem., 100, pp. 761-770
  • Milani, M., Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme (2001) EMBO J., 20, pp. 3902-3909
  • Milani, M., A TyrCD1/TrpG8 hydrogen bond network and a TyrB10-TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O (2003) Proc. Natl Acad. Sci. U. S. A, 100, pp. 5766-5771
  • Milani, M., Heme-ligand tunneling in group i truncated hemoglobins (2004) J. of Biol. Chem., 279, pp. 21520-21525
  • Mishra, S., Meuwly, M., Nitric oxide dynamics in truncated hemoglobin: Docking sites, migration pathways, and vibrational spectroscopy from molecular dynamics simulations (2009) Biophys. J., 96, pp. 2105-2118
  • Mishra, S., Meuwly, M., Atomistic simulation of NO dioxygenation in group i truncated hemoglobin (2010) J. Am. Chem. Soc., 132, pp. 2968-2982
  • Nardini, M., Structural determinants in the group III truncated hemoglobin from Campylobacter jejuni (2006) J. Biol. Chem., 281, pp. 37803-37812
  • Oliveira, A.S.F., Exploring O2 diffusion in A-type cytochrome c oxidases: Molecular dynamics simulations uncover two alternative channels towards the binuclear site (2014) PLoS Comput. Biol., 10, p. e1004010
  • Olson, J., Phillips, G., Myoglobin discriminates between O2, NO, and CO by electrostatic interactions with the bound ligand (1997) J. Biol. Inorg. Chem., 2, pp. 544-552
  • Ouellet, H., Reactions of Mycobacterium tuberculosis truncated hemoglobin O with ligands reveal a novel ligand-inclusive hydrogen bond network (2003) Biochemistry, 42, pp. 5764-5774
  • Ouellet, H., Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: Evidence for peroxidatic activity and formation of protein-based radicals (2007) J. Biol. Chem., 282, pp. 7491-7503
  • Ouellet, H., The roles of Tyr(CD1) and Trp(G8) in Mycobacterium tuberculosis truncated hemoglobin O in ligand binding and on the heme distal site architecture (2007) Biochemistry, 46, pp. 11440-11450
  • Ouellet, Y., Ligand interactions in the distal heme pocket of Mycobacterium tuberculosis truncated hemoglobin N: Roles of TyrB10 and GlnE11 residues (2006) Biochemistry, 45, pp. 8770-8781
  • Ouellet, Y.H., Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water (2008) J. Biol. Chem., 283, pp. 27270-27278
  • Pearlman, D.A., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules (1995) Comput. Phys. Commun., 91, pp. 1-41
  • Perilla, J., Molecular dynamics simulations of large macromolecular complexes (2015) Curr. Opin. Struct. Biol., 31, pp. 64-74
  • Perutz, M.F., Mathews, F.S., An x-ray study of azide methaemoglobin (1966) J. Mol. Biol., 21, pp. 199-202
  • Pesce, A., A novel two-over-two a-helical sandwich fold is characteristic of the truncated hemoglobin family (2000) EMBO J., 19, pp. 2424-2434
  • Pesce, A., Structural characterization of a group II 2/2 hemoglobin from the plant pathogen Agrobacterium tumefaciens (2011) Biochimica et Biophysica Acta-Proteins and Proteomics, 1814, pp. 810-816
  • Potapov, V., Data-driven prediction and design of bZIP coiled-coil interactions (2015) PLoS Comput. Biol., 11, p. e1004046
  • Pucci, F., Rooman, M., Stability curve prediction of homologous proteins using temperature-dependent statistical potentials (2014) PLoS Comput. Biol., 10, p. e1003689
  • (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, , R Core Team,Vienna, Austria
  • Scherlis, D., Simulation of heme using DFT U: A step toward accurate spin-state energetics (2007) J. Phys. Chem. B, 111, pp. 7384-7391
  • Scott, E.E., Mapping the pathways for O2 entry into and exit from myoglobin (2001) J. Biol. Chem., 276, pp. 5177-5188
  • Silk, D., Model selection in systems biology depends on experimental design (2014) PLoS Comput. Biol., 10, p. e1003650
  • Sotomayor, M., Schulten, K., Single-molecule experiments in vitro and in silico (2007) Science, 316, pp. 1144-1148
  • Strickland, N., Harvey, J.N., Spin-forbidden ligand binding to the ferrous-heme group: Ab initio and DFT studies (2007) J. Phys. Chem. B, 111, pp. 841-852
  • Watts, R., A hemoglobin from plants homologous to truncated hemoglobins of microorganisms (2001) Proc. Natl. Acad. Sci. U. S. A, 98, pp. 10119-10124
  • Wilk, M.B., Gnanadesikan, R., Probability plotting methods for the analysis of data (1968) Biometrika (Biometrika Trust), 55, pp. 1-17
  • Wittenberg, J.B., Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants (2002) J. Biol. Chem., 277, pp. 871-874
  • Yang, F., Phillips, G.N., Jr., Crystal structures of CO-, deoxy-and met-myoglobins at various pH values (1996) J. Mol. Biol., 256, pp. 762-774

Citas:

---------- APA ----------
Bustamante, J.P., Szretter, M.E., Sued, M., Martí, M.A., Estrin, D.A. & Boechi, L. (2016) . A quantitative model for oxygen uptake and release in a family of hemeproteins. Bioinformatics, 32(12), 1805-1813.
http://dx.doi.org/10.1093/bioinformatics/btw083
---------- CHICAGO ----------
Bustamante, J.P., Szretter, M.E., Sued, M., Martí, M.A., Estrin, D.A., Boechi, L. "A quantitative model for oxygen uptake and release in a family of hemeproteins" . Bioinformatics 32, no. 12 (2016) : 1805-1813.
http://dx.doi.org/10.1093/bioinformatics/btw083
---------- MLA ----------
Bustamante, J.P., Szretter, M.E., Sued, M., Martí, M.A., Estrin, D.A., Boechi, L. "A quantitative model for oxygen uptake and release in a family of hemeproteins" . Bioinformatics, vol. 32, no. 12, 2016, pp. 1805-1813.
http://dx.doi.org/10.1093/bioinformatics/btw083
---------- VANCOUVER ----------
Bustamante, J.P., Szretter, M.E., Sued, M., Martí, M.A., Estrin, D.A., Boechi, L. A quantitative model for oxygen uptake and release in a family of hemeproteins. Bioinformatics. 2016;32(12):1805-1813.
http://dx.doi.org/10.1093/bioinformatics/btw083