Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Motivation: Transcriptional regulation occurs through the concerted actions of multiple transcription factors (TFs) that bind cooperatively to cis-regulatory modules (CRMs) of genes. These CRMs usually contain a variable number of transcription factor-binding sites (TFBSs) involved in related cellular and physiological processes. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has been effective in detecting TFBSs and nucleosome location to identify potential CRMs in genome-wide studies. Although several attempts were previously reported to predict the potential binding of TFs at TFBSs within CRMs by comparing different ChIP-seq data, these have been hampered by excessive background, usually emerging as a consequence of experimental conditions. To understand these complex regulatory circuits, it would be helpful to have reliable and updated user-friendly tools to assist in the identification of TFBSs and CRMs for gene(s) of interest. Results: Here we present INSECT (IN-silico SEarch for Co-occurring Transcription factors), a novel web server for identifying potential TFBSs and CRMs in gene sequences. By combining several strategies, INSECT provides flexible analysis of multiple co-occurring TFBSs, by applying differing search schemes and restriction parameters. © The Author 2013. Published by Oxford University Press. All rights reserved.

Registro:

Documento: Artículo
Título:INSECT: IN-silico SEarch for Co-occurring Transcription factors
Autor:Rohr, C.O.; Parra, R.G.; Yankilevich, P.; Perez-Castro, C.
Filiación:Instituto de Ecología, Genética y Evolución (IEGEBA)-CONICET, UBA-CONICET-IQUIBICEN, C1428EGA, Buenos Aires, Argentina
Protein Physiology Laboratory, Departamento de Química Biológica, UBA-CONICET-IQUIBICEN, C1428EGA, Buenos Aires, Argentina
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of Max Planck Society, C1425FQD, Buenos Aires, Argentina
Palabras clave:transcription factor; transcription factor; algorithm; binding site; chromatin immunoprecipitation; computer program; computer simulation; DNA sequence; Internet; metabolism; procedures; regulatory sequence; article; DNA sequence; metabolism; methodology; Algorithms; Binding Sites; Chromatin Immunoprecipitation; Computer Simulation; Internet; Regulatory Elements, Transcriptional; Sequence Analysis, DNA; Software; Transcription Factors; Algorithms; Binding Sites; Chromatin Immunoprecipitation; Computer Simulation; Internet; Regulatory Elements, Transcriptional; Sequence Analysis, DNA; Software; Transcription Factors
Año:2013
Volumen:29
Número:22
Página de inicio:2852
Página de fin:2858
DOI: http://dx.doi.org/10.1093/bioinformatics/btt506
Título revista:Bioinformatics
Título revista abreviado:Bioinformatics
ISSN:13674803
CODEN:BOINF
CAS:Transcription Factors; Transcription Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13674803_v29_n22_p2852_Rohr

Referencias:

  • Arnone, M.I., Davidson, E.H., The hardwiring of development: Organization and function of genomic regulatory systems (1997) Development, 124, pp. 1851-1864
  • Ashburner, M., Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium (2000) Nat. Genet., 25, pp. 25-29
  • Berg, O.G., Von Hippel, P.H., Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters (1987) J. Mol. Biol., 193, pp. 723-750
  • Boyer, L.A., Core transcriptional regulatory circuitry in human embryonic stem cells (2005) Cell, 122, pp. 947-956
  • Bryne, J.C., JASPAR, the open access database of transcription factorbinding profiles: New content and tools in the 2008 update (2008) Nucleic Acids Res., 36, pp. D102-D106
  • Dermitzakis, E.T., Clark, A.G., Evolution of transcription factor binding sites in Mammalian gene regulatory regions: Conservation and turnover (2002) Mol. Biol. Evol., 19, pp. 1114-1121
  • Flicek, P., Ensembl 2013 (2013) Nucleic Acids Res., 41, pp. 48-55
  • Frith, M.C., Cluster-Buster: Finding dense clusters of motifs in DNA sequences (2003) Nucleic Acids Res., 31, pp. 3666-3668
  • Fu, Y., MotifViz: An analysis and visualization tool for motif discovery (2004) Nucleic Acids Res., 32, pp. W420-W423
  • Kirchhamer, C.V., Modular cis-regulatory organization of developmentally expressed genes: Two genes transcribed territorially in the sea urchin embryo, and additional examples (1996) Proc. Natl Acad. Sci. USA, 93, pp. 9322-9328
  • Lenhard, B., Wasserman, W.W., TFBS: Computational framework for transcription factor binding site analysis (2002) Bioinformatics, 18, pp. 1135-1136
  • Loh, Y.H., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells (2006) Nat. Genet., 38, pp. 431-440
  • Matys, V., TRANSFAC and its module TRANSCompel: Transcriptional gene regulation in eukaryotes (2006) Nucleic Acids Res., 34, pp. D108-D110
  • Newburger, D.E., Bulyk, M.L., UniPROBE: An online database of protein binding microarray data on protein-DNA interactions (2009) Nucleic Acids Res., 37, pp. 77-82
  • Park, P.J., ChIP-seq: Advantages and challenges of a maturing technology (2009) Nat. Rev. Genet., 10, pp. 669-680
  • Raney, B.J., ENCODE whole-genome data in the UCSC genome browser (2011 update) (2011) Nucleic Acids Res., 39, pp. D871-D875
  • Remenyi, A., Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers (2003) Genes Dev., 17, pp. 2048-2059
  • Rodda, D.J., Transcriptional regulation of nanog by OCT4 and SOX2 (2005) J. Biol. Chem., 280, pp. 24731-24737
  • Stormo, G.D., Fields, D.S., Specificity, free energy and information content in protein-DNA interactions (1998) Trends Biochem. Sci., 23, pp. 109-113
  • Sun, H., ModuleDigger: An itemset mining framework for the detection of cis-regulatory modules (2009) BMC Bioinformatics, 10 (SUPPL. 1), pp. S30
  • Sun, H., Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection (2012) Nucleic Acids Res., 40, pp. e90
  • Tronche, F., Analysis of the distribution of binding sites for a tissuespecific transcription factor in the vertebrate genome (1997) J. Mol. Biol., 266, pp. 231-245
  • Van Loo, P., Marynen, P., Computational methods for the detection of cisregulatory modules (2009) Brief. Bioinform., 10, pp. 509-524
  • Wasserman, W.W., Sandelin, A., Applied bioinformatics for the identification of regulatory elements (2004) Nat. Rev. Genet., 5, pp. 276-287
  • Wray, G.A., The evolution of transcriptional regulation in eukaryotes (2003) Mol. Biol. Evol., 20, pp. 1377-1419

Citas:

---------- APA ----------
Rohr, C.O., Parra, R.G., Yankilevich, P. & Perez-Castro, C. (2013) . INSECT: IN-silico SEarch for Co-occurring Transcription factors. Bioinformatics, 29(22), 2852-2858.
http://dx.doi.org/10.1093/bioinformatics/btt506
---------- CHICAGO ----------
Rohr, C.O., Parra, R.G., Yankilevich, P., Perez-Castro, C. "INSECT: IN-silico SEarch for Co-occurring Transcription factors" . Bioinformatics 29, no. 22 (2013) : 2852-2858.
http://dx.doi.org/10.1093/bioinformatics/btt506
---------- MLA ----------
Rohr, C.O., Parra, R.G., Yankilevich, P., Perez-Castro, C. "INSECT: IN-silico SEarch for Co-occurring Transcription factors" . Bioinformatics, vol. 29, no. 22, 2013, pp. 2852-2858.
http://dx.doi.org/10.1093/bioinformatics/btt506
---------- VANCOUVER ----------
Rohr, C.O., Parra, R.G., Yankilevich, P., Perez-Castro, C. INSECT: IN-silico SEarch for Co-occurring Transcription factors. Bioinformatics. 2013;29(22):2852-2858.
http://dx.doi.org/10.1093/bioinformatics/btt506