Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Motivation: There is a significant ongoing research to identify the number and types of repetitive DNA sequences. As more genomes are sequenced, efficiency and scalability in computational tools become mandatory. Existing tools fail to find distant repeats because they cannot accommodate whole chromosomes, but segments. Also, a quantitative framework for repetitive elements inside a genome or across genomes is still missing. Results: We present a new efficient algorithm and its implementation as a software tool to compute all perfect repeats in inputs of up to 500 million nucleotide bases, possibly containing many genomes. Our algorithm is based on a suffix array construction and a novel procedure to extract all perfect repeats in the entire input, that can be arbitrarily distant, and with no bound on the repeat length. We tested the software on the Homo sapiens DNA genome NCBI 36.49. We computed all perfect repeats of at least 40 bases occurring in any two chromosomes with exact matching. We found that each H. sapiens chromosome shares ∼10% of its full sequence with every other human chromosome, distributed more or less evenly among the chromosome surfaces. We give statistics including a quantification of repeats by diversity, length and number of occurrences. We compared the computed repeats against all biological repeats currently obtainable from Ensembl enlarged with the output of the dust program and all elements identified by TRF and RepeatMasker (ftp://ftp.ebi.ac.uk/pub/databases/ensembl/ jherrero/.repeats/all_repeats.txt.bz2). We report novel repeats as well as new occurrences of repeats matching with known biological elements. © The Author 2009. Published by Oxford University Press. All rights reserved.

Registro:

Documento: Artículo
Título:Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome
Autor:Becher, V.; Deymonnaz, A.; Heiber, P.
Filiación:Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:article; bioinformatics; computer program; controlled study; gene sequence; genetic algorithm; human; human chromosome; human genome; intermethod comparison; nucleotide repeat; priority journal; Algorithms; Genome, Human; Genomics; Humans; Repetitive Sequences, Nucleic Acid; Homo sapiens
Año:2009
Volumen:25
Número:14
Página de inicio:1746
Página de fin:1753
DOI: http://dx.doi.org/10.1093/bioinformatics/btp321
Título revista:Bioinformatics
Título revista abreviado:Bioinformatics
ISSN:13674803
CODEN:BOINF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13674803_v25_n14_p1746_Becher

Referencias:

  • Abajian, C., (1994) Sputnik, , http://espressosoftware.com/pages/sputnik.jsp, Available at
  • Altschul, S., BLAST. Basic local alignment search tool (1990) J. Mol. Biol, 215, pp. 403-410
  • Bejerano, G., Ultraconserved elements in the human genome (2004) Science, 304, pp. 1321-1325
  • Benson, G., Tandem Repeats Finder: A program to analyze DNA sequences (1999) Nucleic Acids Res, 27, pp. 573-580
  • Bergman, C., Quesneville, H., Discovering and detecting transposable elements in genome sequences (2007) Brief. Bioinform, 8, pp. 382-392
  • Caspi, A., Pachter, L., Identification of transposable elements using multiple alignments of related genomes (2006) Genome Res, 16, pp. 260-270
  • Castelo, A., TROLL-Tandem Repeat Occurrence Locator (2002) Bioinformatics, 18, pp. 634-636
  • Catasti, P., DNA repeats in the human genome (1999) Genetica, 106, pp. 15-36
  • Chiang, C., Ultraconserved elements: Analyses of dosage sensitivity, motifs and boundaries (2008) Genetics, 180, pp. 2277-2293
  • Ensembl, (2009) Ensembl, , http://nar.oxfordjournals.org/cgi/content/abstract/gkn828, Available at
  • Goodier, J.L., Kazazian, H.H., Retrotransposons revisited: The restraint and rehabilitation of parasites (2008) Cell, 135, pp. 23-35
  • Gusfield, D., (1997) Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, , Cambridge University Press, New York, NY, USA
  • Kärkkäinen, J., Linear work suffix array construction (2006) J. ACM, 53, pp. 918-936
  • Kasai, T., Linear-time longest-common-prefix computation in suffix arrays and its applications (2001) CPM '01: Proc. 12th Annual Symposium on Combinatorial Pattern Matching, pp. 181-192. , Springer, London, pp
  • Katzman, S., Human genome ultraconserved elements are ultraselected (2007) Science, 317, p. 915
  • Kurtz, S., Schleiermacher, C., Reputer: Fast computation of maximal repeats in complete genomes (1999) Bioinformatics, 15, pp. 426-427
  • Kurtz, S., REPuter: The manifold applications of repeat analysis on a genomic scale (2001) Nucleic Acids Res, 29, pp. 4633-4642
  • Larsson, N.J., Sadakane, K., Faster suffix sorting (2007) Theor. Comput. Sci, 387, pp. 258-272
  • Lefebvre, A., FORRepeats: Detects repeats on entire chromosomes and between genomes (2003) Bioinformatics, 19, pp. 319-326
  • Lippert, R., Space-efficient whole genome comparisons with burrowswheeler transforms (2005) J. Comput. Biol, 12, pp. 407-415
  • Manber, U., Myers, G., Suffix arrays: A new method for on-line string searches (1993) SIAM J. Comput, 22, pp. 935-948
  • Manber, U., Myers, G., (1990) SODA '90: Proceedings of the 1st annual ACM-SIAM Symposium on Discrete Algorithms, pp. 319-327. , San Francisco, pp
  • Poddar, A., Evolutionary insights from suffix array-based genome sequence analysis (2007) J. Biosci, 32, pp. 871-881
  • Puglisi, S.J., A taxonomy of suffix array construction algorithms (2007) ACM Comput. Surv, 39, p. 4
  • Sahal, S., Computational approaches and tools used in identification of dispersed repetitive dna sequences (2008) J. Trop. Plant Biol, 1, pp. 85-96
  • Sahal, S., Empirical comparison of ab initio repeat finding programs (2008) Nucleic Acids Res, 36, pp. 2284-2294
  • Smit,A.F. et al. (2009) RepeatMasker, open-3.0. 1996-2004. Available at http://repeatmasker.org; Taccioli, C., (2009) UCbase & miRfunc: A database of ultraconserved sequences and microRNA function, , http://microrna.osu.edu/.UCbase4, Available at

Citas:

---------- APA ----------
Becher, V., Deymonnaz, A. & Heiber, P. (2009) . Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome. Bioinformatics, 25(14), 1746-1753.
http://dx.doi.org/10.1093/bioinformatics/btp321
---------- CHICAGO ----------
Becher, V., Deymonnaz, A., Heiber, P. "Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome" . Bioinformatics 25, no. 14 (2009) : 1746-1753.
http://dx.doi.org/10.1093/bioinformatics/btp321
---------- MLA ----------
Becher, V., Deymonnaz, A., Heiber, P. "Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome" . Bioinformatics, vol. 25, no. 14, 2009, pp. 1746-1753.
http://dx.doi.org/10.1093/bioinformatics/btp321
---------- VANCOUVER ----------
Becher, V., Deymonnaz, A., Heiber, P. Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome. Bioinformatics. 2009;25(14):1746-1753.
http://dx.doi.org/10.1093/bioinformatics/btp321