Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Diffraction of linearly polarized plane electromagnetic waves at the periodically corrugated boundary of vacuum and a linear, homogeneous, uniaxial, dielectric-magnetic medium is formulated as a boundary-value problem and solved using the Rayleigh method. The focus is on situations where the diffracted fields maintain the same polarization state as the s- or p-polarized incident plane wave. Attention is paid to two classes of diffracting media: those with negative definite permittivity and permeability tensors, and those with indefinite permittivity and permeability tensors. For the situations investigated, whereas the dispersion equations in the diffracting medium turn out to be elliptic for the first class of diffracting media, they are hyperbolic for the second class. Examples are reported with the first class of diffracting media of instances when the grating acts either as a positively refracting interface or as a negatively refracting interface. For the second class of diffracting media, hyperbolic dispersion equations imply the possibility of an infinite number of refraction channels. © lOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Registro:

Documento: Artículo
Título:Diffraction by a grating made of a uniaxial dielectric-magnetic medium exhibiting negative refraction
Autor:Depine, R.A.; Lakhtakia, A.
Filiación:Grupo de Electromagnetismo Aplicado, Departamento de Física, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
CATMAS - Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812, United States
Department of Physics, Imperial College, London SW7 2BZ, United Kingdom
Palabras clave:Dielectric-magnetic medium; Negative refraction; Permeability tensors; Boundary value problems; Electromagnetic waves; Permittivity; Polarization; Rayleigh fading; Tensors; Diffraction gratings
Año:2005
Volumen:7
DOI: http://dx.doi.org/10.1088/1367-2630/7/1/158
Título revista:New Journal of Physics
Título revista abreviado:New J. Phys.
ISSN:13672630
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13672630_v7_n_p_Depine

Referencias:

  • Veselago, V.G., The electrodynamics of substances with simultaneously negative values of ε and ν (1968) Sov. Phys. - Usp., 10, pp. 509-514
  • Lakhtakia, A., McCall, M.W., Weiglhofer, W.S., (2003) Negative Phase-velocity Mediums Introduction to Complex Mediums for Optics and Electromagnetics, , ed W S Weiglhofer and A Lakhtakia (Bellingham, WA: SPIE Press)
  • Special issue on negative refraction (2003) Opt. Express, 11, pp. 639-830
  • Pendry, J.B., Negative refraction (2004) Contemp. Phys., 45, pp. 191-202
  • Rashed, R., A pioneer in anaclastics, Ibn Sahl on burning mirrors and lenses (1990) Isis, 81, pp. 464-491
  • Shelby, R.A., Smith, D.R., Schultz, S., Experimental verification of negative index of refraction (2001) Science, 292, pp. 77-79
  • Parazzoli, C.G., Greegor, R.B., Li, K., Koltenbah, B.E.C., Tanielian, M., Experimental verification and simulation of negative index of refraction using Snell's law (2003) Phys. Rev. Lett., 90, p. 107401
  • Houck, A.A., Brock, J.B., Chuang, I.L., Experimental observations of a left-handed material that obeys Snell's (2003) Law Phys. Rev. Lett., 90, p. 137401
  • Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I., Extremely low frequency plasmons in metallic mesostructures (1996) Phys. Rev. Lett., 76, pp. 4773-4776
  • Pendry, J.B., Holden, A.J., Stewart, W.J., Magnetism from conductors and enhanced nonlinear phenomena (1999) IEEE Trans. Micro. Theory Tech., 47, pp. 2075-2084
  • McCall, M.W., Lakhtakia, A., Weiglhofer, W.S., The negative index of refraction demystified (2002) Eur. J. Phys., 23, pp. 353-359
  • Boardman, A.D., King, N., Velasco, L., Negative refraction in perspective (2005) Electromagnetics, 25. , at press
  • Mackay, T.G., Lakhtakia, A., Plane waves with negative phase velocity in Faraday chiral mediums (2004) Phys. Rev. E, 69, p. 026602
  • Zhang, Y., Fluegel, B., Mascarenhas, A., Total negative refraction in real crystals for ballistic electrons and light (2003) Phys. Rev. Lett., 91, p. 157404
  • Lakhtakia, A., McCall, M.W., Counterposed phase velocity and energy-transport velocity vectors in a dielectric-magnetic uniaxial medium (2004) Optik, 115, pp. 28-30
  • Hu, L.B., Chui, S.T., Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials (2002) Phys. Rev. B, 66, p. 085108
  • Lakhtakia, A., Sherwin, J.A., Orthorhombic materials and perfect lenses (2003) Int. J. Infrared Millim. Waves, 24, pp. 19-23
  • Smith, D.R., Schurig, D., Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors (2003) Phys. Rev. Lett., 90, p. 077405
  • Smith, D.R., Kolinko, P., Schurig, D., Negative refraction in indefinite media (2004) J. Opt. Soc. Am. B, 21, pp. 1032-1043
  • Lakhtakia, A., On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability (2003) Electromagnetics, 23, pp. 71-75
  • Depine, R.A., Lakhtakia, A., Plane-wave diffraction at the periodically corrugated boundary of vacuum and a negative-phase-velocity material (2004) Phys. Rev. E, 69, p. 057602
  • Depine, R.A., Lakhtakia, A., Perturbative approach for diffraction due to a periodically corrugated boundary between vacuum and a negative phase-velocity material (2004) Opt. Commun., 233, pp. 277-282
  • Depine, R.A., Lakhtakia, A., Diffraction gratings of isotropic negative phase-velocity materials (2005) Optik, 116, pp. 31-43
  • Smith, D.R., Rye, P.M., Mock, J.J., Vier, D.C., Starr, A.F., Enhanced diffraction from a grating on the surface of a negative-index metamaterial (2004) Phys. Rev. Lett., 93, p. 137405
  • Depine, R.A., Lakhtakia, A., Smith, D.R., Enhanced diffraction by a rectangular grating made of a negative phase-velocity (or negative index) material (2005) Phys. Lett. A, 337, pp. 155-160
  • Lakhtakia, A., Varadan, V.K., Varadan, V.V., Plane waves and canonical sources in a gyroelectromagnetic uniaxial medium (1991) Int. J. Electron., 71, pp. 853-861
  • Lakhtakia, A., Varadan, V.K., Varadan, V.V., Reflection and transmission of plane waves at the planar interface of a general uniaxial medium and free space (1991) J. Mod. Opt., 38, pp. 649-657
  • Chen, H.C., (1983) Theory of Electromagnetic Waves: A Coordinate-free Approach, , (New York: McGraw-Hill) ch 1
  • Lakhtakia, A., Depine, R.A., Inchaussandague, M.E., Brudny, V.L., Scattering by a periodically corrugated interface between free space and a gyroelectromagnetic uniaxial medium (1993) Appl. Opt., 32, pp. 2765-2772
  • Rayleigh, L., On the dynamical theory of gratings (1907) Proc. R. Soc. A, 79, pp. 399-416
  • Kazandjian, L., Rayleigh methods applied to electromagnetic scattering from gratings in general homogeneous media (1996) Phys. Rev. E, 54, pp. 6802-6815
  • Millar, R.F., On the Rayleigh assumption in scattering by a periodic surface. II (1971) Proc. Camb. Phil. Soc., 69, pp. 217-225
  • Hill, N.R., Celli, V., Limits of convergence of the Rayleigh method for surface scattering (1978) Phys. Rev. B, 17, pp. 2478-2481
  • Popov, E., Mashev, L., Convergence of Rayleigh-Fourier method and rigorous differential method for relief diffraction gratings: Nonsinusoidal profile (1987) J. Mod. Opt., 34, pp. 155-158
  • Depine, R.A., Gigli, M.L., Diffraction from corrugated gratings made with uniaxial crystals: Rayleigh methods (1994) J. Mod. Opt., 41, pp. 695-715
  • Inchaussandague, M.E., Gigli, M.L., Depine, R.A., Reflection characteristics of a PML with a shallow corrugation (2003) IEEE Trans. Micro. Theory Tech., 51, pp. 1691-1695
  • Gigli, M.L., Inchaussandague, M.E., Propagation and excitation of eigenmodes at isotropic-gyroelectromagnetic index-matched interfaces (2004) Opt. Commun., 241, pp. 263-270
  • Lütkepohl, H., (1996) Handbook of Matrices, , (Chichester: Wiley) ch 9
  • Lakhtakia, A., Handedness reversal of circular Bragg phenomenon due to negative real permittivity and permeability (2003) Opt. Express, 11, pp. 716-722
  • Maystre, D., (1993) Selected Papers on Diffraction Gratings, , Bellingham, WA: SPIE
  • Petit, R., (1980) Electromagnetic Theory of Gratings, , Berlin: Springer
  • Born, M., Wolf, E., (1980) Principles of Optics 6th Edn, pp. 47-51. , Oxford: Pergamon
  • Loewen, E., Popov, E., (1997) Diffraction Gratings and Applications, , New York: Dekker
  • Boardman, A.D., (1982) Electromagnetic Surface Modes, , New York: Wiley
  • Raether, H., (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings, , Heidelberg: Springer

Citas:

---------- APA ----------
Depine, R.A. & Lakhtakia, A. (2005) . Diffraction by a grating made of a uniaxial dielectric-magnetic medium exhibiting negative refraction. New Journal of Physics, 7.
http://dx.doi.org/10.1088/1367-2630/7/1/158
---------- CHICAGO ----------
Depine, R.A., Lakhtakia, A. "Diffraction by a grating made of a uniaxial dielectric-magnetic medium exhibiting negative refraction" . New Journal of Physics 7 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/158
---------- MLA ----------
Depine, R.A., Lakhtakia, A. "Diffraction by a grating made of a uniaxial dielectric-magnetic medium exhibiting negative refraction" . New Journal of Physics, vol. 7, 2005.
http://dx.doi.org/10.1088/1367-2630/7/1/158
---------- VANCOUVER ----------
Depine, R.A., Lakhtakia, A. Diffraction by a grating made of a uniaxial dielectric-magnetic medium exhibiting negative refraction. New J. Phys. 2005;7.
http://dx.doi.org/10.1088/1367-2630/7/1/158