Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Accurately interpreting three dimensional (3D) vector quantities output as solutions to high-resolution computational fluid dynamics (CFD) simulations can be an arduous, time-consuming task. Scientific visualization of these fields can be a powerful aid in their understanding. However, numerous pitfalls present themselves ranging from computational performance to the challenge of generating insightful visual representations of the data. In this paper, we briefly survey current practices for visualizing 3D vector fields, placing particular emphasis on those data arising from CFD simulations of turbulence. We describe the capabilities of a vector field visualization system that we have implemented as part of an open source visual data analysis environment. We also describe a novel algorithm we have developed for illustrating the advection of one vector field by a second flow field. We demonstrate these techniques in the exploration of two sets of runs. The first comprises an ideal and a resistive magnetohydrodynamic (MHD) simulation. This set is used to test the validity of the advection scheme. The second corresponds to a simulation of MHD turbulence. We show the formation of structures in the flows, the evolution of magnetic field lines, and how field line advection can be used effectively to track structures therein. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Registro:

Documento: Artículo
Título:Flow visualization and field line advection in computational fluid dynamics: Application to magnetic fields and turbulent flows
Autor:Mininni, P.; Lee, E.; Norton, A.; Clyne, J.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000, United States
Palabras clave:Advection; Computational fluid dynamics; Dynamics; Flow visualization; Fluid dynamics; Magnetic fields; Three dimensional; Turbulence; Turbulent flow; Vectors; Visualization; 3D vectors; CFD simulations; Computational performances; Current practices; Field lines; High resolutions; Magnetic field lines; Mhd turbulences; Novel algorithms; Open sources; Scientific visualizations; Track structures; Vector field visualizations; Vector fields; Vector quantities; Visual data analyses; Visual representations; Data visualization
Año:2008
Volumen:10
DOI: http://dx.doi.org/10.1088/1367-2630/10/12/125007
Título revista:New Journal of Physics
Título revista abreviado:New J. Phys.
ISSN:13672630
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_13672630_v10_n_p_Mininni.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13672630_v10_n_p_Mininni

Referencias:

  • Post, F., Laramee, R., Vrolijk, B., Hauser, H., Doleisch, H., Feature extraction and visualization of now fields (2002) Eurographics 2002 State of the Art Reports, pp. 69-100
  • Post, F., Laramee, R., Vrolijk, B., Hauser, H., Doleisch, H., The state of the art in flow visualization: Feature extraction and tracking (2003) Comput. Graph. Forum, 22, pp. 775-792
  • Laramee, R., Hauser, H., Doleisch, H., Post, F., Vrolijk, B., Weiskopf, D., The state of the art in flow visualization: Dense and texture-based techniques (2004) Comput. Graph. Forum, 23, pp. 203-221
  • Clyne, J., Mininni, P., Norton, A., Rast, M., Interactive desktop analysis of high resolution simulations: Application to turbulent plume dynamics and current sheet formation (2007) New J. Phys, 9, p. 301
  • Cabral, B., Leedom, L.C., Imaging vector fields using line integral convolution (1993) SIGGRAPH '93: Proc. 20th Ann. Conf. on Computer Graphics and Interactive Techniques, pp. 263-270. , New York: ACM pp
  • van Wijk, J.J., Spot noise texture synthesis for data visualization SIGGRAPH (1991) Comput. Graph, 25, pp. 309-318
  • van Wijk, J.J., Image based flow visualization (2002) SIGGRAPH '02: Proc. 29th Annu. Conf. on Computer Graphics and Interactive Techniques, pp. 745-754. , New York: ACM pp
  • Telea, A., van Wijk, J.J., (2003) 3d ibfv: Hardware-accelerated 3d flow visualization VIS '03: Proc. 14th IEEE Visualization 2003 (VIS'03), pp. 233-240. , Washington, DC: IEEE Computer Society pp
  • Rezk-Salama, C., Hastreiter, P., Teitzel, C., Ertl, T., Interactive exploration of volume line integral convolution based on 3d-texture mapping VIS (1999) 99: Proc. Conf. on Visualization, pp. 233-240. , 99 (Los Alamitos, CA: IEEE Computer Society Press) pp
  • Weiskopf, D., Ertl, T., Gpu-based 3d texture advection for the visualization of unsteady flow fields (2004) WSCG'2004 The 12th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision, pp. 259-266
  • Kenwright, D.N., Haimes, R., Automatic vortex core detection (1998) IEEE Comput. Graph. Appl, 18, pp. 70-74
  • Bauer, D., Peikert, R., Vortex tracking in scale-space (2002) VISSYM '02: Proc. Symp. on Data Visualisation 2002, pp. 140-147. , Aire-la-Ville, Switzerland: Eurographics Association pp
  • Stegmaier, S., Ertl, T., A graphies hardware-based vortex detection and visualization system (2004) VIS '04: Proc. Conf. on Visualization '04, pp. 195-202. , Washington, DC: IEEE Computer Society pp
  • Caban, J., Joshi, A., Rheingans, M.-P., Texture-based feature tracking for effective time-varying data visualization (2007) IEEE Trans. Vis. Comput. Graph, 13, pp. 1472-1479
  • Ma K-L, Van Rosendale J and Vermeer W 1996 3d shock wave visualization on unstructured grids VVS '96: Proc. 1996 Symp. on Visualization (Piscataway NJ: IEEE Press) pp 87-94; Kenwright, D.N., Automatic detection of open and closed separation and attachment lines VIS (1998) 98: Proc. Conf on Visualization, pp. 151-158. , 98 (Los Alamitos, CA: IEEE Computer Society Press) pp
  • Kenwright, D.N., Henze, C., Levit, C., Feature extraction of separation and attachment lines (1999) IEEE Trans. Vis. Comput. Graph, 5, pp. 135-144
  • Roth, M., Peikert, R., Flow visualization for turbomachinery design VIS (1996) 96: Proc. 7th Conf. on Visualization, pp. 381-384. , 96 (Los Alamitos, CA: IEEE Computer Society Press) pp
  • Helman, J.L., Hesselink, L., Representation and display of vector field topology in fluid flow data sets (1989) Computer, 22, pp. 27-36
  • de Leeuw, W., van Liere, R., Visualization of global flow structures using multiple levels of topology Data Visualization (1999) E Gröller, H Löffelmann and W Ribarsky, pp. 45-52. , 99 ed, Wien: Springer pp
  • Bremer, P.-T., Pascucci, V., Hamman, B., Maximizing adaptivity in hierarchical topological models using extrema trees (2008) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, , ed T Moeller, B Hamann and R D Russell Berlin: Springer
  • Buning, P.G., Sources of error in the graphical analysis of cfd results (1988) J. Sci. Comput, 3, pp. 149-164
  • Liu, Z., Moorhead, M.-R., Groner, J., An advanced evenly-spaced streamline placement algorithm (2006) IEEE Trans. Vis. Comput. Graph, 12, pp. 965-972
  • Chen, Y., Cohen, J.D., Krolik, J.H., Similarity-guided streamline placement with error evaluation (2007) IEEE Trans. Vis. Comput. Graph, 13, pp. 1448-1455
  • Li, L., Shen, H.-W., Image-based streamline generation and rendering (2007) IEEE Trans. Vis. Comput. Graph, 13, pp. 630-640
  • Verma, V., Kao, D., Pang, A., A flow-guided streamline seeding strategy (2000) VIS '00: Proc. Conf. on Visualization '00, pp. 163-170. , Los Alamitos, CA: IEEE Computer Society Press pp
  • Ye, X., Kao, D., Pang, A., (2005) Strategy for seeding 3d streamlines Visualization, 2005. VIS 05, pp. 471-478. , IEEE pp
  • Sanna, A., Montrucchio, B., Arina, R., Visualizing unsteady flows by adaptive streaklines (2000) WSCG'2000 The 8th Int. Conf. in Central Europe on Computer Graphics, pp. 184-191
  • Kenwright D and Lane D 1995 Optimization of time-dependent particle tracing using tetrahedral decomposition Proc. IEEE Visualization '95 pp 321-8; Batchelor, G.K., (1967) An Introduction to Fluid Dynamics, , Cambridge: Cambridge University Press
  • Moffatt, H.K., (1978) Magnetic Field Generation in Electrically Conducting Fluids, , Cambridge: Cambridge University Press
  • Nordlund, A., (2007), private communication; Glatzmaier, G.A., Roberts, P.H., A three-dimensional self-consistent computer simulation of a geomagnetic field reversal (1995) Nature, 377, pp. 203-209
  • Monchaux, R., Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium (2007) Phys. Rev. Lett, 98, p. 044502
  • Chandrasekhar, S., (1961) Hydrodynamic and Hydromagnetic Stability, , Oxford: Clarendon
  • Matthaeus, W.H., Reconnection in 2 dimensions-Localization of vorticity and current near magnetic X-points (1982) Geophys. Res. Lett, 9, pp. 660-663
  • Forbes, T.G., Priest, E.R., (2000) Magnetic Reconnection: MHD Theory and Applications, , Cambridge: Cambridge University Press
  • Politano, H., Pouquet, A., Sulem, P.L., Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence (1985) Phys. Plasmas, 2, pp. 2931-2939
  • Mininni, P.D., Gómez, D.O., Mahajan, S.M., Direct simulations of helical hall-mhd turbulence and dynamo action (2005) Astrophys. J, 619, pp. 1019-1027
  • Gómez, D.O., Mininni, P.D., Dmitruk, P., Parallel simulations in turbulent mhd (2005) Phys. Scr. T, 116, pp. 123-127
  • Canuto, C., Hussaini, Y., Quarteroni, A., Zang, T., (1988) Spectral Methods in Fluid Dynamics, , New York: Springer
  • Lee E, Brachet M E, Pouquet A, Mininni P D and Rosenberg D 2008 A paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets arXiv:0802.1550v2; Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H., Frisch, U., Small-scale structure of the Taylor-Green vortex (1983) J. Fluid Mech, 130, pp. 411-452
  • Nore, C., Brachet, M.E., Politano, H., Pouquet, A., Dynamo action in the taylor-green vortex near threshold (1997) Phys. Plasmas Lett, pp. 41-43
  • Mininni, P.D., Pouquet, A.G., Montgomery, D.C., Small-scale structures in three-dimensional magnetohydrodynamic turbulence (2006) Phys. Rev. Lett, 97, p. 244503
  • Bruno, R., Carbone, V., The solar wind as a turbulence laboratory Living Rev (2005) Solar Phys, 2. , http://www.livingreviews.org/lrsp-2005-4, Online at
  • Parker, E.N., (1979) Cosmical Magnetic Fields, , New York: Clarendon
  • Brandenburg, A., Subramanian, K., Astrophysical magnetic fields and nonlinear dynamo theory (2005) Phys. Rep, 417, pp. 1-210
  • Matthaeus, W.H., Goldstein, M.L., Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind (1982) J. Geophys. Res, 87, pp. 6011-6028
  • Saur J, Politano H, Pouquet A and Matthaeus W 2002 Evidence for weak MHD turbulence in the middle magnetosphere of Jupiter Astron. Astrophys. 386 699 708; Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K., Uno, A., Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box (2003) Phys. Fluids, 15, pp. L21-L24
  • DelÁlamo, J.C., Jiménez, J., Zandonade, P., Moser, R.D., Self-similar vortex clusters in the turbulent logarithmic region (2006) J. Fluid Mech, 561, pp. 329-358
  • Mininni, P.D., Alexakis, A., Pouquet, A., Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws (2008) Phys. Rev. E, 77, p. 036306
  • Mininni, P.D., Pouquet, A., Energy spectra stemming from interactions of Alfvén waves and turbulent eddies (2007) Phys. Rev. Lett, 99, p. 254502
  • Childress, S., Gilbert, A.D., (1995) Stretch, Twist, Fold: The Fast Dynamo, , Berlin: Springer

Citas:

---------- APA ----------
Mininni, P., Lee, E., Norton, A. & Clyne, J. (2008) . Flow visualization and field line advection in computational fluid dynamics: Application to magnetic fields and turbulent flows. New Journal of Physics, 10.
http://dx.doi.org/10.1088/1367-2630/10/12/125007
---------- CHICAGO ----------
Mininni, P., Lee, E., Norton, A., Clyne, J. "Flow visualization and field line advection in computational fluid dynamics: Application to magnetic fields and turbulent flows" . New Journal of Physics 10 (2008).
http://dx.doi.org/10.1088/1367-2630/10/12/125007
---------- MLA ----------
Mininni, P., Lee, E., Norton, A., Clyne, J. "Flow visualization and field line advection in computational fluid dynamics: Application to magnetic fields and turbulent flows" . New Journal of Physics, vol. 10, 2008.
http://dx.doi.org/10.1088/1367-2630/10/12/125007
---------- VANCOUVER ----------
Mininni, P., Lee, E., Norton, A., Clyne, J. Flow visualization and field line advection in computational fluid dynamics: Application to magnetic fields and turbulent flows. New J. Phys. 2008;10.
http://dx.doi.org/10.1088/1367-2630/10/12/125007