Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background:Loss or mutations of the BRCA1 gene are associated with increased risk of breast and ovarian cancers and with prostate cancer (PCa) aggressiveness. Previously, we identified GADD153 as a target of BRCA1 protein, which increases doxorubicin sensitivity in human p53 -/- PCa cells (PC3). Considering that p53 is a crucial target in cancer therapy, in this work we investigated p53 role in the regulation of transcription of GADD153.Methods:We performed reverse transcription quantitative PCR (RT-qPCR), western blot and luciferase assays to analyze GADD153 and/or BRCA1 expression in response to ultraviolet or doxorubicin exposure in PC3 p53 stable-transfected cells and LNCaP (p53+/+) cells. BRCA1 protein recruitment to GADD153 promoter was studied by chromatin immunoprecipitation-qPCR. To assess expression of BRCA1 and/or p53 target genes, we used a panel of stable-transfected PCa cell lines. We finally analyzed these genes in vivo using BRCA1-depleted PCa xenograft models.Results:We found that GADD153 was highly induced by doxorubicin in PC3 cells; however, this response was totally abolished in LNCaP (p53wt) and in p53-restituted PC3 cells. Furthermore, BRCA1 protein associates to GADD153 promoter after DNA damage in the presence of p53. Additionally, we demonstrated that BRCA1 and/or p53 modulate genes involved in DNA damage and cell cycle regulation (cyclin D1, BLM, BRCA2, DDB2, p21 WAF1/CIP1, H3F3B, GADD153, GADD45A, FEN1, CCNB2), EMT (E-cadherin, β-catenin, vimentin, fibronectin, slug, snail) and Hedgehog pathways (SHH, IHH, DHH, Gli1, PATCH1). Furthermore, xenograft studies demonstrated that BRCA1 knockdown in PC3 cells increased tumor growth and modulated these genes in vivo.Conclusions:Although BRCA1 induces GADD153 in a p53 independent manner, p53 abolished GADD153 induction in response to DNA damage. In addition, several important PCa targets are modulated by BRCA1 and p53. Altogether, these data might be important to understand the therapy response of PCa patients.© 2013 Macmillan Publishers Limited All rights reserved.

Registro:

Documento: Artículo
Título:BRCA1 and p53 regulate critical prostate cancer pathways
Autor:De Luca, P.; Moiola, C.P.; Zalazar, F.; Gardner, K.; Vazquez, E.S.; De Siervi, A.
Filiación:Department of Biological Chemistry, School of Sciences (FCEN), University of Buenos Aires (UBA), IBuenos Aires C1428EGA, Argentina
Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
Palabras clave:BRCA1; DNA damage; GADD153; p53; beta catenin; Bloom syndrome helicase; BRCA1 protein; BRCA2 protein; cyclin D1; cyclin dependent kinase inhibitor 1; fibronectin; growth arrest and DNA damage inducible protein 153; luciferase; protein p53; protein Patched 1; sonic hedgehog protein; transcription factor Gli1; transcription factor Slug; transcription factor Snail; uvomorulin; vimentin; actin B gene; animal experiment; animal model; animal tissue; article; beta catenin gene; BLM gene; CCNB2 gene; cell cycle regulation; cell strain LNCaP; chromatin immunoprecipitation; controlled study; Cyclin D1 gene; DDB2 gene; DNA damage; E cadherin gene; enzyme assay; epithelial mesenchymal transition; FEN1 gene; fibronectin gene; GADD153 gene; Gadd45a gene; gene; gene expression; GLI1 gene; H3F3B gene; in vivo study; male; mouse; nonhuman; p21 WAF1 CIP1 gene; patch1 gene; priority journal; prostate cancer; protein expression; quantitative analysis; reverse transcription polymerase chain reaction; SHH gene; Slug gene; Snail gene; transcription regulation; tumor suppressor gene; Vimentin gene; Western blotting; Animals; BRCA1 Protein; Cell Cycle; Cell Line, Tumor; DNA Damage; Hedgehogs; Heterografts; Humans; Male; Mice; Prostatic Neoplasms; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Transcription Factor CHOP; Transcription, Genetic; Tumor Suppressor Protein p53
Año:2013
Volumen:16
Número:3
Página de inicio:233
Página de fin:238
DOI: http://dx.doi.org/10.1038/pcan.2013.12
Título revista:Prostate Cancer and Prostatic Diseases
Título revista abreviado:Prostate Cancer Prostatic Dis.
ISSN:13657852
CODEN:PCPDF
CAS:fibronectin, 86088-83-7; uvomorulin, 112956-45-3
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_13657852_v16_n3_p233_DeLuca.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13657852_v16_n3_p233_DeLuca

Referencias:

  • Lowe, S.W., Ruley, H.E., Jacks, T., Housman, D.E., P53-dependent apoptosis modulates the cytotoxicity of anticancer agents (1993) Cell, 74, pp. 957-967
  • Blandino, G., Levine, A.J., Oren, M., Mutant p53 gain of function: Differential effects of different p53 mutants on resistance of cultured cells to chemotherapy (1999) Oncogene, 18, pp. 477-485
  • Olivier, M., Hollstein, M., Hainaut, P., TP53 mutations in human cancers: Origins, consequences, and clinical use (2010) Cold Spring Harb Perspect Biol, 2, pp. a001008
  • Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P.A., Harshman, K., Tavtigian, S., A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1 (1994) Science, 266, pp. 66-71
  • Ford, D., Easton, D.F., Bishop, D.T., Narod, S.A., Goldgar, D.E., Risks of cancer in BRCA1- mutation carriers. Breast Cancer Linkage Consortium (1994) Lancet, 343, pp. 692-695
  • Douglas, J.A., Levin, A.M., Zuhlke, K.A., Ray, A.M., Johnson, G.R., Lange, E.M., Common variation in the BRCA1 gene and prostate cancer risk (2007) Cancer Epidemiol Biomarkers Prev, 16, pp. 1510-1516
  • Gallagher, D.J., Gaudet, M.M., Pal, P., Kirchhoff, T., Balistreri, L., Vora, K., Germline BRCA mutations denote a clinicopathologic subset of prostate cancer (2010) Clin Cancer Res, 16, pp. 2115-2121
  • Liu, X., Holstege, H., Van Der Gulden, H., Treur-Mulder, M., Zevenhoven, J., Velds, A., Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer (2007) Proc Natl Acad Sci USA, 104, pp. 12111-12116
  • Venkitaraman, A.R., Cancer susceptibility and the functions of BRCA1 and BRCA2 (2002) Cell, 108, pp. 171-182
  • De Luca, P., Vazquez, E.S., Moiola, C.P., Zalazar, F., Cotignola, J., Gueron, G., BRCA1 loss induces GADD153-mediated doxorubicin resistance in prostate cancer (2011) Mol Cancer Res, 9, pp. 1078-1090
  • De Siervi, A., De Luca, P., Byun, J.S., Di, L.J., Fufa, T., Haggerty, C.M., Transcriptional autoregulation by BRCA1 (2010) Cancer Res, 70, pp. 532-542
  • Smith, J.L., Freebern, W.J., Collins, I., De Siervi, A., Montano, I., Haggerty, C.M., Kinetic profiles of p300 occupancy in vivo predict common features of promoter structure and coactivator recruitment (2004) Proc Natl Acad Sci USA, 101, pp. 11554-11559
  • Xu, C.F., Chambers, J.A., Solomon, E., Complex regulation of the BRCA1 gene (1997) J Biol Chem, 272, pp. 20994-20997
  • De Siervi, A., De Luca, P., Moiola, C., Gueron, G., Tongbai, R., Chandramouli, G., Identification of new Rel/NFkB regulatory networks by focused genome location analysis (2009) Cell Cycle, 8, p. 13
  • Maclachlan, T.K., Somasundaram, K., Sgagias, M., Shifman, Y., Muschel, R.J., Cowan, K.H., BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression (2000) J Biol Chem, 275, pp. 2777-2785
  • Anand, S., Chakrabarti, E., Kawamura, H., Taylor, C.R., Maytin, E.V., Ultraviolet light (UVB and UVA) induces the damage-responsive transcription factor CHOP/gadd153 in murine and human epidermis: Evidence for a mechanism specific to intact skin (2005) J Invest Dermatol, 125, pp. 323-333
  • Whibley, C., Pharoah, P.D., Hollstein, M., P53 polymorphisms: Cancer implications (2009) Nat Rev Cancer, 9, pp. 95-107
  • Holstege, H., Joosse, S.A., Van Oostrom, C.T., Nederlof, P.M., De Vries, A., Jonkers, J., High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer (2009) Cancer Res, 69, pp. 3625-3633
  • Manie, E., Vincent-Salomon, A., Lehmann-Che, J., Pierron, G., Turpin, E., Warcoin, M., High frequency of TP53 mutation in BRCA1 and sporadic basal-like carcinomas but not in BRCA1 luminal breast tumors (2009) Cancer Res, 69, pp. 663-671
  • Navone, N.M., Troncoso, P., Pisters, L.L., Goodrow, T.L., Palmer, J.L., Nichols, W.W., P53 protein accumulation and gene mutation in the progression of human prostate carcinoma (1993) J Natl Cancer Inst, 85, pp. 1657-1669
  • Moiola, C., De Luca, P., Cotignola, J., Gardner, K., Vazquez, E., De Siervi, A., Dynamic coregulatory complex containing BRCA1, E2F1 and CtIP controls ATM transcription (2012) Cell Physiol Biochem, 30, pp. 596-608
  • Agiostratidou, G., Hulit, J., Phillips, G.R., Hazan, R.B., Differential cadherin expression: Potential markers for epithelial to mesenchymal transformation during tumor progression (2007) J Mammary Gland Biol Neoplasia, 12, pp. 127-133
  • Mitselou, A., Batistatou, A., Nakanishi, Y., Hirohashi, S., Vougiouklakis, T., Charalabopoulos, K., Comparison of the dysadherin and E-cadherin expression in primary lung cancer and metastatic sites (2010) Histol Histopathol, 25, pp. 1257-1267
  • Chao, Y.L., Shepard, C.R., Wells, A., Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition (2010) Mol Cancer, 9, p. 179
  • Hudson, L.G., Zeineldin, R., Stack, M.S., Phenotypic plasticity of neoplastic ovarian epithelium: Unique cadherin profiles in tumor progression (2008) Clin Exp Metastasis, 25, pp. 643-655
  • Paredes, J., Correia, A.L., Ribeiro, A.S., Milanezi, F., Cameselle-Teijeiro, J., Schmitt, F.C., Breast carcinomas that co-express E- and P-cadherin are associated with p120- catenin cytoplasmic localisation and poor patient survival (2008) J Clin Pathol, 61, pp. 856-862
  • Emadi Baygi, M., Soheili, Z.S., Essmann, F., Deezagi, A., Engers, R., Goering, W., Slug/ SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines (2010) Tumour Biol, 31, pp. 297-307
  • Epstein, E.H., Basal cell carcinomas: Attack of the hedgehog (2008) Nat Rev Cancer, 8, pp. 743-754
  • Chen, M., Feuerstein, M.A., Levina, E., Baghel, P.S., Carkner, R.D., Tanner, M.J., Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells (2010) Mol Cancer, 9, p. 89
  • Sanchez, P., Clement, V., Ruiz, I., Altabai, A., Therapeutic targeting of the Hedgehog-GLI pathway in prostate cancer (2005) Cancer Res, 65, pp. 2990-2992
  • Zhang, J., Lipinski, R., Shaw, A., Gipp, J., Bushman, W., Lack of demonstrable autocrine hedgehog signaling in human prostate cancer cell lines (2007) J Urol, 177, pp. 1179-1185

Citas:

---------- APA ----------
De Luca, P., Moiola, C.P., Zalazar, F., Gardner, K., Vazquez, E.S. & De Siervi, A. (2013) . BRCA1 and p53 regulate critical prostate cancer pathways. Prostate Cancer and Prostatic Diseases, 16(3), 233-238.
http://dx.doi.org/10.1038/pcan.2013.12
---------- CHICAGO ----------
De Luca, P., Moiola, C.P., Zalazar, F., Gardner, K., Vazquez, E.S., De Siervi, A. "BRCA1 and p53 regulate critical prostate cancer pathways" . Prostate Cancer and Prostatic Diseases 16, no. 3 (2013) : 233-238.
http://dx.doi.org/10.1038/pcan.2013.12
---------- MLA ----------
De Luca, P., Moiola, C.P., Zalazar, F., Gardner, K., Vazquez, E.S., De Siervi, A. "BRCA1 and p53 regulate critical prostate cancer pathways" . Prostate Cancer and Prostatic Diseases, vol. 16, no. 3, 2013, pp. 233-238.
http://dx.doi.org/10.1038/pcan.2013.12
---------- VANCOUVER ----------
De Luca, P., Moiola, C.P., Zalazar, F., Gardner, K., Vazquez, E.S., De Siervi, A. BRCA1 and p53 regulate critical prostate cancer pathways. Prostate Cancer Prostatic Dis. 2013;16(3):233-238.
http://dx.doi.org/10.1038/pcan.2013.12