Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. Although many studies point to an important role of inflammation in prostate growth, the contribution of inflammation to castration-resistant prostate cancer is not completely understood. The presence of inflammatory mediators in tumor microenvironment raises the question whether genetic events that participate in cancer development and progression are responsible for the inflammatory milieu inside and surrounding tumors. Activated oncogenes, cytokines, chemokines and their receptors, sustained oxidative stress and antioxidant imbalance share the capacity to orchestrate these pro-inflammatory programs; however, the diversity of the inflammatory cell components will determine the final response in the prostate tissue. These observations give rise to the concept that early genetic events generate an inflammatory microenvironment promoting prostate cancer progression and creating a continuous loop that stimulates a more aggressive stage. It is imperative to dissect the molecular pathologic mechanism of inflammation involved in the generation of the castration-resistant phenotype in prostate cancer. Here, we present a hypothesis where molecular signaling triggered by inflammatory mediators may evolve in prostate cancer progression. Thus, treatment of chronic inflammation may represent an important therapeutic target in advanced prostate cancer. © 2012 Macmillan Publishers Limited All rights reserved.

Registro:

Documento: Artículo
Título:Advanced prostate cancer: Reinforcing the strings between inflammation and the metastatic behavior
Autor:Gueron, G.; De Siervi, A.; Vazquez, E.
Filiación:Department of Biological Chemistry, Pabellón II, University of Buenos Aires, Intendente Guiraldes 2160, Buenos Aires C1428EGA, Argentina
Palabras clave:castration-resistant prostate cancer (CRPC); chemokines; inflammation; metastasis; reactive oxygen species (ROS); chemokine receptor CXCR4; chemokine receptor CXCR6; chemokine receptor CXCR7; heme oxygenase 1; immunoglobulin enhancer binding protein; interleukin 6; interleukin 8; matrix metalloproteinase; Notch receptor; osteopontin; parathyroid hormone related protein; reactive oxygen metabolite; stromal cell derived factor 1; tumor necrosis factor alpha; advanced cancer; cancer growth; carcinogenesis; castration resistant prostate cancer; cell homing; cell proliferation; cellular stress signal; chronic inflammation; gene activation; gene targeting; human; metastasis; oncogene; priority journal; prostate cancer; protein expression; protein function; review; signal transduction; tumor growth; tumor microenvironment; Animals; Bone and Bones; Chemokines; Disease Progression; Humans; Inflammation; Inflammation Mediators; Male; Neoplasm Metastasis; Neoplasm Staging; Oxidative Stress; Prostatic Neoplasms; Reactive Oxygen Species; Receptors, Chemokine; Signal Transduction; Tumor Microenvironment
Año:2012
Volumen:15
Número:3
Página de inicio:213
Página de fin:221
DOI: http://dx.doi.org/10.1038/pcan.2011.64
Título revista:Prostate Cancer and Prostatic Diseases
Título revista abreviado:Prostate Cancer Prostatic Dis.
ISSN:13657852
CODEN:PCPDF
CAS:chemokine receptor CXCR4, 188900-71-2; interleukin 8, 114308-91-7; osteopontin, 106441-73-0; Chemokines; Inflammation Mediators; Reactive Oxygen Species; Receptors, Chemokine
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13657852_v15_n3_p213_Gueron

Referencias:

  • Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D., Global cancer statistics (2011) CA Cancer J Clin, 61, pp. 69-90
  • Karin, M., Nuclear factor-kappaB in cancer development and progression (2006) Nature, 441, pp. 431-436
  • Mercader, M., Bodner, B.K., Moser, M.T., Kwon, P.S., Park, E.S., Manecke, R.G., T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer (2001) Proc Natl Acad Sci USA, 98, pp. 14565-14570
  • Ammirante, M., Luo, J.L., Grivennikov, S., Nedospasov, S., Karin, M., B-cell-derived lymphotoxin promotes castration-resistant prostate cancer (2010) Nature, 464, pp. 302-305
  • Terada, N., Shimizu, Y., Kamba, T., Inoue, T., Maeno, A., Kobayashi, T., Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model (2010) Cancer Res, 70, pp. 1606-1615
  • Matsuoka, T., Narumiya, S., The roles of prostanoids in infection and sickness behaviors (2008) J Infect Chemother, 14, pp. 270-278
  • Hull, M.A., Ko, S.C., Hawcroft, G., Prostaglandin EP receptors: Targets for treatment and prevention of colorectal cancer (2004) Mol Cancer Ther, 3, pp. 1031-1039
  • Attard, G., Reid, A.H., Olmos, D., De Bono, J.S., Antitumor activity with CYP17 blockade indicates that castration-resistant prostate cancer frequently remains hormone driven (2009) Cancer Res, 69, pp. 4937-4940
  • Bonkhoff, H., Berges, R., From pathogenesis to prevention of castration resistant prostate cancer (2010) Prostate, 70, pp. 100-112
  • Bonkhoff, H., Berges, R., The evolving role of oestrogens and their receptors in the development and progression of prostate cancer (2009) Eur Urol, 55, pp. 533-542
  • Dutt, S.S., Gao, A.C., Molecular mechanisms of castration-resistant prostate cancer progression (2009) Future Oncol, 5, pp. 1403-1413
  • Khandrika, L., Kumar, B., Koul, S., Maroni, P., Koul, H.K., Oxidative stress in prostate cancer (2009) Cancer Lett, 282, pp. 125-136
  • Chetram, M.A., Odero-Marah, V., Hinton, C.V., Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells (2011) Mol Cancer Res, 9, pp. 90-102
  • Vandercappellen, J., Van Damme, J., Struyf, S., The role of CXC chemokines and their receptors in cancer (2008) Cancer Lett, 267, pp. 226-244
  • Thobe, M.N., Clark, R.J., Bainer, R.O., Prasad, S.M., Rinker-Schaeffer, C.W., From prostate to bone: Key players in prostate cancer bone metastasis (2011) Cancers (Basel, 3, pp. 478-493
  • Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., Involvement of chemokine receptors in breast cancer metastasis (2001) Nature, 410, pp. 50-56
  • Wang, J., Loberg, R., Taichman, R.S., The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis (2006) Cancer Metastasis Rev, 25, pp. 573-587
  • Chinni, S.R., Sivalogan, S., Dong, Z., Filho, J.C., Deng, X., Bonfil, R.D., CXCL12/CXCR4 Signaling Activates Akt-1 and MMP-9
  • Expression in prostate cancer cells: The role of bone microenvironment-associated CXCL12 (2006) Prostate, 66, pp. 32-48
  • Taichman, R.S., Cooper, C., Keller, E.T., Pienta, K.J., Taichman, N.S., McCauley, L.K., Use of the Stromal Cell-Derived Factor-1/CXCR4
  • Pathway in prostate cancer metastasis to bone (2002) Cancer Res, 62, pp. 1832-1837
  • Shulby, S.A., Dolloff, N.G., Stearns, M.E., Meucci, O., Fatatis, A., CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells (2004) Cancer Res, 64, pp. 4693-4698
  • Kukreja, P., Abdel-Mageed, A.B., Mondal, D., Liu, K., Agrawal, K.C., Up-regulation of CXCR4 expression in PC-3 cells by stromalderived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: Role of MEK/ERK signaling pathway-dependent NF-kappaB activation (2005) Cancer Res, 65, pp. 9891-9898
  • Engl, T., Relja, B., Marian, D., Blumenberg, C., Muller, I., Beecken, W.D., CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins (2006) Neoplasia, 8, pp. 290-301
  • Sun, Y.X., Fang, M., Wang, J., Cooper, C.R., Pienta, K.J., Taichman, R.S., Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells (2007) Prostate, 67, pp. 61-73
  • Xing, Y., Liu, M., Du, Y., Qu, F., Li, Y., Zhang, Q., Tumor cellspecific blockade of CXCR4/SDF-1 interactions in prostate cancer cells by hTERT promoter induced CXCR4 knockdown: A possible metastasis preventing and minimizing approach (2008) Cancer Biol Ther, 7, pp. 1839-1848
  • Frigo, D.E., Sherk, A.B., Wittmann, B.M., Norris, J.D., Wang, Q., Joseph, J.D., Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro (2009) Mol Endocrinol, 23, pp. 1385-1396
  • Cai, J., Kandagatla, P., Singareddy, R., Kropinski, A., Sheng, S., Cher, M.L., Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells (2010) Transl Oncol, 3, pp. 195-203
  • Gopalan, A., Leversha, M.A., Satagopan, J.M., Zhou, Q., Al-Ahmadie, H.A., Fine, S.W., TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy (2009) Cancer Res, 69, pp. 1400-1406
  • Toubaji, A., Albadine, R., Meeker, A.K., Isaacs, W.B., Lotan, T., Haffner, M.C., Increased gene copy number of ERG on chromosome 21 but not TMPRSS2-ERG fusion predicts outcome in prostatic adenocarcinomas (2011) Mod Pathol, 24, pp. 1511-1520
  • Akashi, T., Koizumi, K., Tsuneyama, K., Saiki, I., Takano, Y., Fuse, H., Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer (2008) Cancer Sci, 99, pp. 539-542
  • Begley, L.A., MacDonald, J.W., Day, M.L., Macoska, J.A., CXCL12
  • Activates a robust transcriptional response in human prostate epithelial cells (2007) J Biol Chem, 282, pp. 26767-26774
  • Wang, J., Shiozawa, Y., Wang, Y., Jung, Y., Pienta, K.J., Mehra, R., The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer (2008) J Biol Chem, 283, pp. 4283-4294
  • Burns, J.M., Summers, B.C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development (2006) J Exp Med, 203, pp. 2201-2213
  • Raggo, C., Ruhl, R., McAllister, S., Koon, H., Dezube, B.J., Fruh, K., Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus (2005) Cancer Res, 65, pp. 5084-5095
  • Miao, Z., Luker, K.E., Summers, B.C., Berahovich, R., Bhojani, M.S., Rehemtulla, A., CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature (2007) Proc Natl Acad Sci USA, 104, pp. 15735-15740
  • Singh, R.K., Lokeshwar, B.L., The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth (2011) Cancer Res, 71, pp. 3268-3277
  • Lehrer, S., Diamond, E.J., Mamkine, B., Stone, N.N., Stock, R.G., Serum interleukin-8 is elevated in men with prostate cancer and bone metastases (2004) Technol Cancer Res Treat, 3, p. 411
  • Wang, J., Lu, Y., Koch, A.E., Zhang, J., Taichman, R.S., CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway (2008) Cancer Res, 68, pp. 10367-10376
  • Ha, H.K., Lee, W., Park, H.J., Lee, S.D., Lee, J.Z., Chung, M.K., Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer (2011) Mol Med Report, 4, pp. 419-424
  • Chandrasekar, B., Bysani, S., Mummidi, S., CXCL16 signals via Gi, phosphatidylinositol 3-kinase, Akt, I kappa B kinase, and nuclear factor-kappa B and induces cell-cell adhesion and aortic smooth muscle cell proliferation (2004) J Biol Chem, 279, pp. 3188-3196
  • Deng, L., Chen, N., Li, Y., Zheng, H., Lei, Q., CXCR6/CXCL16
  • (2010) Biochim Biophys Acta, 1806, pp. 42-49. , Functions As A Regulator In Metastasis And Progression Of Cancer
  • Nakayama, T., Hieshima, K., Izawa, D., Tatsumi, Y., Kanamaru, A., Yoshie, O., Cutting edge: Profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues (2003) J Immunol, 170, pp. 1136-1140
  • Inoue, K., Slaton, J.W., Eve, B.Y., Kim, S.J., Perrotte, P., Balbay, M.D., Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer (2000) Clin Cancer Res, 6, pp. 2104-2119
  • Kim, S.J., Uehara, H., Karashima, T., McCarty, M., Shih, N., Fidler, I.J., Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice (2001) Neoplasia, 3, pp. 33-42
  • Lamont, K.R., Tindall, D.J., Minireview: Alternative activation pathways for the androgen receptor in prostate cancer (2011) Mol Endocrinol, 25, pp. 897-907
  • Waugh, D.J., Wilson, C., The interleukin-8 pathway in cancer (2008) Clin Cancer Res, 14, pp. 6735-6741
  • McCarron, S.L., Edwards, S., Evans, P.R., Gibbs, R., Dearnaley, D.P., Dowe, A., Influence of cytokine gene polymorphisms on the development of prostate cancer (2002) Cancer Res, 62, pp. 3369-3372
  • Wilson, C., Purcell, C., Seaton, A., Oladipo, O., Maxwell, P.J., O'Sullivan, J.M., Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis (2008) J Pharmacol Exp Ther, 327, pp. 746-759
  • Tassidis, H., Culig, Z., Wingren, A.G., Harkonen, P., Role of the protein tyrosine phosphatase SHP-1 in Interleukin-6 regulation of prostate cancer cells (2010) Prostate, 70, pp. 1491-1500
  • Shariat, S.F., Andrews, B., Kattan, M.W., Kim, J., Wheeler, T.M., Slawin, K.M., Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis (2001) Urology, 58, pp. 1008-1015
  • Blaszczyk, N., Masri, B.A., Mawji, N.R., Ueda, T., McAlinden, G., Duncan, C.P., Osteoblast-derived factors induce androgenindependent proliferation and expression of prostate-specific antigen in human prostate cancer cells (2004) Clin Cancer Res, 10, pp. 1860-1869
  • Culig, Z., Steiner, H., Bartsch, G., Hobisch, A., Interleukin-6
  • Regulation of prostate cancer cell growth (2005) J Cell Biochem, 95, pp. 497-505
  • Ishiguro, H., Akimoto, K., Nagashima, Y., Kojima, Y., Sasaki, T., Ishiguro-Imagawa, Y., APKClambda/iota promotes growth of prostate cancer cells in an autocrine manner through transcriptional activation of interleukin-6 (2009) Proc Natl Acad Sci USA, 106, pp. 16369-16374
  • Malinowska, K., Neuwirt, H., Cavarretta, I.T., Bektic, J., Steiner, H., Dietrich, H., Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor (2009) Endocr Relat Cancer, 16, pp. 155-169
  • Chun, J.Y., Nadiminty, N., Dutt, S., Lou, W., Yang, J.C., Kung, H.J., Interleukin-6 regulates androgen synthesis in prostate cancer cells (2009) Clin Cancer Res, 15, pp. 4815-4822
  • Wu, Y., Zhou, B.P., TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion (2010) Br J Cancer, 102, pp. 639-644
  • Davis, J.S., Nastiuk, K.L., Krolewski, J.J., TNF is necessary for castration-induced prostate regression, whereas TRAIL and FasL are dispensable (2011) Mol Endocrinol, 25, pp. 611-620
  • Shukla, S., MacLennan, G.T., Fu, P., Patel, J., Marengo, S.R., Resnick, M.I., Nuclear factor-kappaB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression (2004) Neoplasia, 6, pp. 390-400
  • Jin, R.J., Lho, Y., Connelly, L., Wang, Y., Yu, X., Saint Jean, L., The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth (2008) Cancer Res, 68, pp. 6762-6769
  • Huang, S., Pettaway, C.A., Uehara, H., Bucana, C.D., Fidler, I.J., Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis (2001) Oncogene, 20, pp. 4188-4197
  • Gasparian, A.V., Yao, Y.J., Kowalczyk, D., Lyakh, L.A., Karseladze, A., Slaga, T.J., The role of IKK in constitutive activation of NFkappaB transcription factor in prostate carcinoma cells (2002) J Cell Sci, 115, pp. 141-151
  • Hanahan, D., Weinberg, R.A., Hallmarks of cancer: The next generation (2011) Cell, 144, pp. 646-674
  • Mantovani, A., Cancer: Inflaming metastasis (2009) Nature, 457, pp. 36-37
  • Shiota, M., Yokomizo, A., Tada, Y., Inokuchi, J., Kashiwagi, E., Masubuchi, D., Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression (2010) Oncogene, 29, pp. 237-250
  • Maynard, S., Schurman, S.H., Harboe, C., De Souza-Pinto, N.C., Bohr, V.A., Base excision repair of oxidative DNA damage and association with cancer and aging (2009) Carcinogenesis, 30, pp. 2-10
  • Taplin, M.E., Rajeshkumar, B., Halabi, S., Werner, C.P., Woda, B.A., Picus, J., Androgen receptor mutations in androgenindependent prostate cancer: Cancer and Leukemia Group B Study 9663 (2003) J Clin Oncol, 21, pp. 2673-2678
  • Linja, M.J., Savinainen, K.J., Saramaki, O.R., Tammela, T.L., Vessella, R.L., Visakorpi, T., Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer (2001) Cancer Res, 61, pp. 3550-3555
  • Murakami, S., Noguchi, T., Takeda, K., Ichijo, H., Stress signaling in cancer (2007) Cancer Sci, 98, pp. 1521-1527
  • Gort, E.H., Van Haaften, G., Verlaan, I., Groot, A.J., Plasterk, R.H., Shvarts, A., The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha (2008) Oncogene, 27, pp. 1501-1510
  • Hoek, K., Rimm, D.L., Williams, K.R., Zhao, H., Ariyan, S., Lin, A., Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas (2004) Cancer Res, 64, pp. 5270-5282
  • Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis (2004) Cell, 117, pp. 927-939
  • Bostwick, D.G., Alexander, E.E., Singh, R., Shan, A., Qian, J., Santella, R.M., Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer (2000) Cancer, 89, pp. 123-134
  • Best, C.J., Gillespie, J.W., Yi, Y., Chandramouli, G.V., Perlmutter, M.A., Gathright, Y., Molecular alterations in primary prostate cancer after androgen ablation therapy (2005) Clin Cancer Res, 11, pp. 6823-6834
  • Sharifi, N., Hurt, E.M., Thomas, S.B., Farrar, W.L., Effects of manganese superoxide dismutase silencing on androgen receptor function and gene regulation: Implications for castration-resistant prostate cancer (2008) Clin Cancer Res, 14, pp. 6073-6080
  • Tam, N.N., Gao, Y., Leung, Y.K., Ho, S.M., Androgenic regulation of oxidative stress in the rat prostate: Involvement of NAD(P)H oxidases and antioxidant defense machinery during prostatic involution and regrowth (2003) Am J Pathol, 163, pp. 2513-2522
  • Pang, S.T., Dillner, K., Wu, X., Pousette, A., Norstedt, G., Flores-Morales, A., Gene expression profiling of androgen deficiency predicts a pathway of prostate apoptosis that involves genes related to oxidative stress (2002) Endocrinology, 143, pp. 4897-4906
  • Eliceiri, B.P., Integrin and growth factor receptor crosstalk (2001) Circ Res, 89, pp. 1104-1110
  • Verma, I.M., Stevenson, J.K., Schwarz, E.M., Van Antwerp, D., Miyamoto, S., Rel/NF-kappa B/I kappa B family: Intimate tales of association and dissociation (1995) Genes Dev, 9, pp. 2723-2735
  • Karin, M., Cao, Y., Greten, F.R., Li, Z.W., NF-kappaB in cancer: From innocent bystander to major culprit (2002) Nat Rev Cancer, 2, pp. 301-310
  • Kong, D., Li, Y., Wang, Z., Banerjee, S., Sarkar, F.H., Inhibition of angiogenesis and invasion by 3,30-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer (2007) Cancer Res, 67, pp. 3310-3319
  • Ryter, S.W., Choi, A.M., Heme oxygenase-1: Molecular mechanisms of gene expression in oxygen-related stress (2002) Antioxid Redox Signal, 4, pp. 625-632
  • Min, K.J., Lee, J.T., Joe, E.H., Kwon, T.K., An IkappaBalpha phosphorylation inhibitor induces heme oxygenase-1(HO-1) expression through the activation of reactive oxygen species (ROS)-Nrf2-ARE signaling and ROS-PI3K/Akt signaling in an NF-kappaB-independent mechanism (2011) Cell Signal, 23, pp. 1505-1513
  • Sacca, P., Meiss, R., Casas, G., Mazza, O., Calvo, J.C., Navone, N., Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer (2007) Br J Cancer, 97, pp. 1683-1689
  • Lin, Q., Weis, S., Yang, G., Weng, Y.H., Helston, R., Rish, K., Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress (2007) J Biol Chem, 282, pp. 20621-20633
  • Lin, Q.S., Weis, S., Yang, G., Zhuang, T., Abate, A., Dennery, P.A., Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress (2008) Free Radic Biol Med, 44, pp. 847-855
  • Gueron, G., De Siervi, A., Ferrando, M., Salierno, M., De Luca, P., Elguero, B., Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells (2009) Mol Cancer Res, 7, pp. 1745-1755
  • Ferrando, M., Gueron, G., Elguero, B., Giudice, J., Salles, A., Leskow, F.C., Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer (2011) Angiogenesis, 14, pp. 467-479
  • Li, Y., Su, J., DingZhang, X., Zhang, J., Yoshimoto, M., Liu, S., PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome (2011) J Pathol, (224), pp. 90-100
  • Akech, J., Wixted, J.J., Bedard, K., Van Der Deen, M., Hussain, S., Guise, T.A., Runx2 association with progression of prostate cancer in patients: Mechanisms mediating bone osteolysis and osteoblastic metastatic lesions (2010) Oncogene, (29), pp. 811-821
  • Guise, T.A., Mohammad, K.S., Clines, G., Stebbins, E.G., Wong, D.H., Higgins, L.S., Basic mechanisms responsible for osteolytic and osteoblastic bone metastases (2006) Clin Cancer Res, 12, pp. 6213s-6216s
  • Armstrong, A.P., Miller, R.E., Jones, J.C., Zhang, J., Keller, E.T., Dougall, W.C., RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes (2008) Prostate, 68, pp. 92-104
  • Bendre, M.S., Margulies, A.G., Walser, B., Akel, N.S., Bhattacharrya, S., Skinner, R.A., Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway (2005) Cancer Res, 65, pp. 11001-11009
  • Araki, S., Omori, Y., Lyn, D., Singh, R.K., Meinbach, D.M., Sandman, Y., Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer (2007) Cancer Res, 67, pp. 6854-6862
  • Li, Z.G., Yang, J., Vazquez, E.S., Rose, D., Vakar-Lopez, F., Mathew, P., Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone (2008) Oncogene, 27, pp. 596-603
  • Clines, G.A., Mohammad, K.S., Bao, Y., Stephens, O.W., Suva, L.J., Shaughnessy Jr., J.D., Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation (2007) Mol Endocrinol, 21, pp. 486-498
  • Hall, C.L., Kang, S., MacDougald, O.A., Keller, E.T., Role of Wnts in prostate cancer bone metastases (2006) J Cell Biochem, 97, pp. 661-672
  • Kingsley, L.A., Fournier, P.G., Chirgwin, J.M., Guise, T.A., Molecular biology of bone metastasis (2007) Mol Cancer Ther, 6, pp. 2609-2617
  • Li, Z.G., Mathew, P., Yang, J., Starbuck, M.W., Zurita, A.J., Liu, J., Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms (2008) J Clin Invest, 118, pp. 2697-2710
  • Deryugina, E.I., Quigley, J.P., Matrix metalloproteinases and tumor metastasis (2006) Cancer Metastasis Rev, 25, pp. 9-34
  • Morgia, G., Falsaperla, M., Malaponte, G., Madonia, M., Indelicato, M., Travali, S., Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer (2005) Urol Res, 33, pp. 44-50
  • Selvamurugan, N., Jefcoat, S.C., Kwok, S., Kowalewski, R., Tamasi, J.A., Partridge, N.C., Overexpression of Runx2 directed by the matrix metalloproteinase-13 promoter containing the AP-1 and Runx/RD/Cbfa sites alters bone remodeling in vivo (2006) J Cell Biochem, 99, pp. 545-557
  • Pratap, J., Lian, J.B., Javed, A., Barnes, G.L., Van Wijnen, A.J., Stein, J.L., Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone (2006) Cancer Metastasis Rev, 25, pp. 589-600
  • Dunn, L.K., Mohammad, K.S., Fournier, P.G., McKenna, C.R., Davis, H.W., Niewolna, M., Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment (2009) Plos One, 4, pp. e6896
  • Yang, Q., McHugh, K.P., Patntirapong, S., Gu, X., Wunderlich, L., Hauschka, P.V., VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin (2008) Matrix Biol, 27, pp. 589-599
  • Dai, J., Kitagawa, Y., Zhang, J., Yao, Z., Mizokami, A., Cheng, S., Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein (2004) Cancer Res, 64, pp. 994-999
  • Weilbaecher, K.N., Guise, T.A., McCauley, L.K., Cancer to bone: A fatal attraction (2011) Nat Rev Cancer, 11, pp. 411-425
  • Drake, J.M., Danke, J.R., Henry, M.D., Bone-specific growth inhibition of prostate cancer metastasis by atrasentan (2010) Cancer Biol Ther, 9, pp. 607-614
  • Fontana, A., Galli, L., Fioravanti, A., Orlandi, P., Galli, C., Landi, L., Clinical and pharmacodynamic evaluation of metronomic cyclophosphamide, celecoxib, and dexamethasone in advanced hormone-refractory prostate cancer (2009) Clin Cancer Res, 15, pp. 4954-4962
  • Wang, Z., Li, Y., Banerjee, S., Kong, D., Ahmad, A., Nogueira, V., Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways (2010) J Cell Biochem, 109, pp. 726-736
  • Zayzafoon, M., Abdulkadir, S.A., McDonald, J.M., Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines (2004) J Biol Chem, 279, pp. 3662-3670
  • Santagata, S., Demichelis, F., Riva, A., Varambally, S., Hofer, M.D., Kutok, J.L., JAGGED1 expression is associated with prostate cancer metastasis and recurrence (2004) Cancer Res, 64, pp. 6854-6857
  • Bin Hafeez, B., Adhami, V.M., Asim, M., Siddiqui, I.A., Bhat, K.M., Zhong, W., Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator (2009) Clin Cancer Res, 15, pp. 452-459
  • Pazolli, E., Luo, X., Brehm, S., Carbery, K., Chung, J.J., Prior, J.L., Senescent stromal-derived osteopontin promotes preneoplastic cell growth (2009) Cancer Res, 69, pp. 1230-1239
  • McAllister, S.S., Gifford, A.M., Greiner, A.L., Kelleher, S.P., Saelzler, M.P., Ince, T.A., Systemic endocrine instigation of indolent tumor growth requires osteopontin (2008) Cell, 133, pp. 994-1005
  • Anborgh, P.H., Mutrie, J.C., Tuck, A.B., Chambers, A.F., Role of the metastasis-promoting protein osteopontin in the tumour microenvironment (2010) J Cell Mol Med, 14, pp. 2037-2044
  • Lynch, C.C., Hikosaka, A., Acuff, H.B., Martin, M.D., Kawai, N., Singh, R.K., MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL (2005) Cancer Cell, 7, pp. 485-496
  • Li, X., Loberg, R., Liao, J., Ying, C., Snyder, L.A., Pienta, K.J., A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone (2009) Cancer Res, 69, pp. 1685-1692
  • Zhang, Y., Forootan, S.S., Kamalian, L., Bao, Z.Z., Malki, M.I., Foster, C.S., Suppressing tumourigenicity of prostate cancer cells by inhibiting osteopontin expression (2011) Int J Oncol, 38, pp. 1083-1091

Citas:

---------- APA ----------
Gueron, G., De Siervi, A. & Vazquez, E. (2012) . Advanced prostate cancer: Reinforcing the strings between inflammation and the metastatic behavior. Prostate Cancer and Prostatic Diseases, 15(3), 213-221.
http://dx.doi.org/10.1038/pcan.2011.64
---------- CHICAGO ----------
Gueron, G., De Siervi, A., Vazquez, E. "Advanced prostate cancer: Reinforcing the strings between inflammation and the metastatic behavior" . Prostate Cancer and Prostatic Diseases 15, no. 3 (2012) : 213-221.
http://dx.doi.org/10.1038/pcan.2011.64
---------- MLA ----------
Gueron, G., De Siervi, A., Vazquez, E. "Advanced prostate cancer: Reinforcing the strings between inflammation and the metastatic behavior" . Prostate Cancer and Prostatic Diseases, vol. 15, no. 3, 2012, pp. 213-221.
http://dx.doi.org/10.1038/pcan.2011.64
---------- VANCOUVER ----------
Gueron, G., De Siervi, A., Vazquez, E. Advanced prostate cancer: Reinforcing the strings between inflammation and the metastatic behavior. Prostate Cancer Prostatic Dis. 2012;15(3):213-221.
http://dx.doi.org/10.1038/pcan.2011.64