Artículo

Schmidt, C.; Dunker, T.; Lichtenstern, S.; Scheer, J.; Wüst, S.; Hoppe, U.-P.; Bittner, M. "Derivation of vertical wavelengths of gravity waves in the MLT-region from multispectral airglow observations" (2018) Journal of Atmospheric and Solar-Terrestrial Physics. 173:119-127
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present the derivation of gravity wave vertical wavelengths from OH airglow observations of different vibrational transitions. It utilizes small phase shifts regularly observed between the OH(3-1) and OH(4-2) intensities in the spectra of the GRIPS (GRound-based Infrared P-branch Spectrometer) instruments, which record the OH airglow emissions in the wavelength range from 1.5 μm to 1.6 μm simultaneously. These phase shifts are interpreted as being due to gravity waves passing through the OH airglow layer and affecting individual vibrational transitions at slightly different times due to small differences in their emission heights. The results are compared with co-located observations of the Na-Lidar measurements acquired between 2010 and 2014 at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR, 69.28° N, 16.01° E), Norway. This comparison shows best agreement if the mean height difference of the OH(3-1) and OH(4-2) emission is assumed to be 540 m (1σ = 160 m). The results are also compared with co-located observations of the OH(6-2)- and O2b(0-1)-transitions by means of spectrometer observations (TANGOO instrument, Tilting-filter spectrometer for Atmospheric Nocturnal Ground-based Oxygen & hydrOxyl emission measurements) performed from 2013 until 2016 at Oberpfaffenhofen (48.08° N, 11.27° E), Germany. For approximately 40% of all wave events observed with GRIPS in the period range from 0.25 h to 17 h, a quantitative estimate of the phase relationship between the OH(3-1) and OH(4-2) intensities can be retrieved from the spectra allowing derivation of vertical wavelengths. The retrieval performs best for wave periods below two hours (80% success rate) and worse for periods above ten hours (successful in less than 10% of the cases). The average wavelength determined from 102 events amounts to 22.9 km (1σ: 9.0 km). The corresponding mean wavelength determined from the TANGOO observations amounts to 22.6 km ± 10.5 km, if a mean separation of 6.5 km is assumed for the height difference between the OH(6-2) and O2b(0-1)-transitions. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Derivation of vertical wavelengths of gravity waves in the MLT-region from multispectral airglow observations
Autor:Schmidt, C.; Dunker, T.; Lichtenstern, S.; Scheer, J.; Wüst, S.; Hoppe, U.-P.; Bittner, M.
Filiación:German Aerospace Center (DLR-DFD), Wessling82234, Germany
Department of Physics and Technology, UiT the Arctic University of Norway, Postboks 6050 Langnes, Tromsø, 9037, Norway
Formerly German Aerospace Center (DLR-DFD), Wessling82234, Germany
Instituto de Astronomía y Física del Espacio, CONICET, CC67, Suc. 28, Buenos Aires, Argentina
Augsburg University (UNA), Augsburg, 86135, Germany
Time and Frequency Metrology, National Laboratory, Justervesenet, Postboks 170, Kjeller, 2027, Norway
Palabras clave:Airglow; Atmospheric gravity waves; MLT region; NDMC; Vertical wavelengths; Optical radar; Spectrometers; Airglow; Atmospheric gravity waves; Emission measurement; MLT region; NDMC; Phase relationships; Quantitative estimates; Vibrational transitions; Gravity waves
Año:2018
Volumen:173
Página de inicio:119
Página de fin:127
DOI: http://dx.doi.org/10.1016/j.jastp.2018.03.002
Título revista:Journal of Atmospheric and Solar-Terrestrial Physics
Título revista abreviado:J. Atmos. Sol.-Terr. Phys.
ISSN:13646826
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13646826_v173_n_p119_Schmidt

Referencias:

  • Adler-Golden, S., Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements (1997) J. Geophys. Res. Space Phys., 102 (A9), pp. 19969-19976. , https://doi.org/10.1029/97JA01622
  • Baker, D.J., Stair, A.T., Jr., Rocket measurements of the altitude distributions of the hydroxyl airglow (1988) Phys. Scripta, 37 (4), pp. 611-622. , https://doi.org/10.1088/0031-8949/37/4/021
  • Beig, G., Keckhut, P., Lowe, R.P., Roble, R.G., Mlynczak, M.G., Scheer, J., Fomichev, V.I., Fadnavis, S., Review of mesospheric temperature trends (2003) Rev. Geophys., 41 (4), pp. 1015-1055. , https://doi.org/10.1029/2002RG000121
  • Bittner, M., Offermann, D., Bugaeva, I.V., Kokin, G.A., Koshelikov, J.P., Krivolutsky, A., Tarasenko, D.A., Tsuda, T., Long period/large scale oscillations of temperature during the DYANA campaign (1994) J. Atmos. Terr. Phys., 56 (13-14), pp. 1675-1700. , https://doi.org/10.1016/0021-9169(94)90004-3
  • Bittner, M., Offermann, D., Graef, H.H., Mesopause temperature variability above a midlatitude station in Europe (2000) J. Geophys. Res. Atmos., 105 (D2), pp. 2045-2058. , https://doi.org/10.1029/1999JD900307
  • Bittner, M., Offermann, D., Graef, H.H., Donner, M., Hamilton, K., An 18 year time series of OH rotational temperatures and middle atmosphere decadal variations (2002) J. Atmos. Terr. Phys., 64 (8-11), pp. 1147-1166. , https://doi.org/10.1016/S1364-6826(02)00065-2
  • Dunker, T., Hoppe, U.P., Stober, G., Rapp, M., Development of the mesospheric Na layer at 69° N during the Geminids meteor shower 2010 (2013) Ann. Geophys., 31, pp. 61-73. , https://doi.org/10.5194/angeo-31-61-2013
  • Fagundes, P.R., Takahashi, H., Sahai, Y., Gobbi, D., Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23° S (1995) J. Atmos. Terr. Phys., 57 (4), pp. 395-405. , https://doi.org/10.1016/0021-9169(94)E0007-A
  • French, W.J.R., Klekociuk, A.R., Long-term trends in Antarctic winter hydroxyl temperatures (2011) J. Geophys. Res. Atmos., 116 (D4). , https://doi.org/10.1029/2011JD015731
  • Fritts, D.C., Alexander, M.J., Gravity wave dynamics and effects in the middle atmosphere (2003) Rev. Geophys., 41 (1). , https://doi.org/10.1029/2001RG00D106
  • Fritts, D.C., Hoppe, U.-P., High-resolution measurements of vertical velocity with the European incoherent scatter VHF radar 2. Spectral observations and model comparisons (1995) J. Geophys. Res. Atmos., 100 (D8), pp. 16827-16838. , https://doi.org/10.1029/95JD01467
  • Guharay, A., Taori, A., Taylor, M., Summer-time nocturnal wave characteristics in mesospheric OH and O2 airglow emissions (2008) Earth Planets Space, 60 (9), pp. 973-979. , https://doi.org/10.1186/BF03352853
  • Hannawald, P., Schmidt, C., Wüst, S., Bittner, M., A fast SWIR imager for observations of transient features in OH airglow (2016) Atmos. Meas. Tech, 9 (4), pp. 1461-1472. , https://doi.org/10.5194/amt-9-1461-2016
  • Hines, C.O., Tarasick, D.W., On the detection and utilization of gravity waves in airglow studies (1987) Planet. Space Sci., 35, pp. 851-866. , https://doi.org/10.1016/0032-0633(87)90063-8
  • Krassovsky, V.I., Infrasonic variations of OH emission in the upper atmosphere (1972) Ann. Geophys., 28 (4), pp. 739-746
  • Liu, A.Z., Swenson, G.R., A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves (2003) J. Geophys. Res., 108 (D4), p. 4151. , https://doi.org/10.1029/2002JD002474
  • López-González, M.J., Rodríguez, E., Shepherd, G.G., Sargoytchev, S., Shepherd, M.G., Aushev, V.M., Brown, S., Wiens, R.H., Tidal variations of O2 Atmospheric and OH (6–2) airglow and temperature at mid-latitudes from SATI observations (2005) Ann. Geophys., 23 (12), pp. 3579-3590. , https://doi.org/10.5194/angeo-23-3579-2005
  • López-Moreno, J.J., Rodrigo, R., Moreno, F., López-Puertas, M., Molina, A., Altitude distribution of vibrationally excited states of atmospheric hydroxyl at levels v = 2 to v = 7 (1987) Planet. Space Sci., 35 (8), pp. 1029-1038. , https://doi.org/10.1016/0032-0633(87)90007-9
  • Makhlouf, U.B., Picard, R.H., Winick, J.R., Photochemical-dynamical modeling of the measured response of airglow to gravity waves: 1. Basic model for OH airglow (1995) J. Geophys. Res. Atmos., 100 (D6), pp. 11289-11311. , https://doi.org/10.1029/94JD03327
  • Perminov, V.I., Semenov, A.I., Medvedeva, I.V., Zheleznov, Y.A., Variability of mesopause temperature from the hydroxyl airglow observations over mid-latitudinal sites, Zvenigorod and Tory, Russia (2014) Adv. Space Res., 54 (12), pp. 2511-2517. , https://doi.org/10.1016/j.asr.2014.01.027
  • Reisin, E.R., Scheer, J., Characteristics of atmospheric waves in the tidal period range derived from zenith observations of O2(0–1) Atmospheric and OH(6-2) airglow at lower midlatitudes (1996) J. Geophys. Res., 101, pp. 21223-21232. , https://doi.org/10.1029/96JD01723
  • Reisin, E.R., Scheer, J., Vertical propagation of gravity waves determined from zenith observations of airglow (2001) Adv. Space Res., 27 (10), pp. 1743-1748. , https://doi.org/10.1016/S0273-1177(01)00313-1
  • Scheer, J., Programmable tilting filter spectrometer for studying gravity waves in the upper atmosphere (1987) Appl. Optic., 26 (15), pp. 3077-3082. , https://doi.org/10.1364/AO.26.003077
  • Schmidt, C., Höppner, K., Bittner, M., A ground-based spectrometer equipped with an InGaAs array for routine observations of OH(3-1) rotational temperatures in the mesopause region (2013) J. Atmos. Sol. Terr. Phys., 102, pp. 125-139. , https://doi.org/10.1016/j.jastp.2013.05.001
  • Sedlak, R., Hannawald, P., Schmidt, C., Wüst, S., Bittner, M., High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer (2016) Atmos. Meas. Tech, 9 (12), pp. 5955-5963. , https://doi.org/10.5194/amt-9-5955-2016
  • Silber, I., Price, C., Schmidt, C., Wüst, S., Bittner, M., Pecora, E., First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part I: multi-day oscillations and tides (2017) J. Atmos. Sol. Terr. Phys., 155, pp. 95-103. , https://doi.org/10.1016/j.jastp.2016.08.014
  • Snively, J.B., Pasko, V.P., Taylor, M.J., OH and OI airglow layer modulation by ducted short-period gravity waves: effects of trapping altitude (2010) J. Geophys. Res. Space Phys., 115 (A11311). , https://doi.org/10.1029/2009JA015236
  • Swenson, G.R., Gardner, C.S., Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves (1998) J. Geophys. Res. Atmos., 103 (D6), pp. 6271-6294. , https://doi.org/10.1029/97JD02985
  • Swenson, G.R., Liu, A.Z., A model for calculating acoustic gravity wave energy and momentum flux in the mesosphere from OH airglow (1998) Geophys. Res. Lett., 25 (4), pp. 477-480. , https://doi.org/10.1029/98GL00132
  • Takahashi, H., Onohara, A., Shiokawa, K., Vargas, F., Gobbi, D., Atmospheric wave induced O2 and OH airglow intensity variations: effect of vertical wavelength and damping (2011) Ann. Geophys., 29 (4), pp. 631-637. , https://doi.org/10.5194/angeo-29-631-2011
  • Taori, A., Taylor, M.J., Franke, S., Terdiurnal wave signatures in the upper mesospheric temperature and their association with the wind fields at low latitudes (20° N) (2005) J. Geophys. Res. Atmos., 110 (D9). , https://doi.org/10.1029/2004JD004564
  • Tarasick, D.W., Hines, C.O., The observable effects of gravity waves on airglow emissions (1990) Planet. Space Sci., 38 (9), pp. 1105-1119. , https://doi.org/10.1016/0032-0633(90)90019-M
  • Teiser, G., von Savigny, C., Variability of OH(3-1) and OH(6-2) emission altitude and volume emission rate from 2003 to 2011 (2017) J. Atmos. Sol. Terr. Phys., 161, pp. 28-42. , https://doi.org/10.1016/j.jastp.2017.04.010
  • Vargas, F., Swenson, G., Liu, A., Gobbi, D., O (1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere (2007) J. Geophys. Res. Atmos., 112 (D14). , https://doi.org/10.1029/2006JD007642
  • von Savigny, C., Lednyts’ kyy, O., On the relationship between atomic oxygen and vertical shifts between OH Meinel bands originating from different vibrational levels (2013) Geophys. Res. Lett., 40 (21), pp. 5821-5825. , https://doi.org/10.1002/2013GL058017
  • von Savigny, C., McDade, I.C., Eichmann, K.U., Burrows, J.P., On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations (2012) Atmos. Chem. Phys., 12 (18), pp. 8813-8828. , https://doi.org/10.5194/acp-12-8813-2012
  • Wachter, P., Schmidt, C., Wüst, S., Bittner, M., Spatial gravity wave characteristics obtained from multiple OH (3–1) airglow temperature time series (2015) J. Atmos. Sol. Terr. Phys., 135, pp. 192-201. , https://doi.org/10.1016/j.jastp.2015.11.008
  • Wrasse, C.M., Takahashi, H., Gobbi, D., Comparison of the OH (8-3) and (6-2) band rotational temperature of the mesospheric airglow emissions (2004) Rev. Bras. Geofís., 22 (3), pp. 223-231. , https://doi.org/10.1590/S0102-261X2004000300002
  • Wüst, S., Bittner, M., Gravity wave reflection: case study based on rocket data (2008) J. Atmos. Terr. Phys., 70, pp. 742-755. , https://doi.org/10.1016/j.jastp.2007.10.010
  • Wüst, S., Bittner, M., Yee, J.-H., Mlynczak, M.G., Russel, J.M., III, Variability of the Brunt-Väisälä frequency at the OH*-layer height (2017) Atmos. Meas. Tech., 10, pp. 4895-4903. , https://doi.org/10.5194/amt-10-4895-2017
  • Wüst, S., Schmidt, C., Bittner, M., Silber, I., Price, C., Yee, J.-H., Mlynczak, M.G., Russel, J.M., III, First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part II: OH*-climatology and gravity wave activity (2017) J. Atmos. Sol. Terr. Phys., 155, pp. 104-111. , https://doi.org/10.1016/j.jastp.2017.01.003
  • Wüst, S., Wendt, V., Schmidt, C., Lichtenstern, S., Bittner, M., Yee, J.H., Mlynczak, M.G., Russell, J.M., III, Derivation of gravity wave potential energy density from NDMC measurements (2016) J. Atmos. Sol. Terr. Phys., 138-139, pp. 32-46. , https://doi.org/10.1016/j.jastp.2015.12.003
  • Xu, J., Gao, H., Smith, A., Zhu, Y., Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region (2012) J. Geophys. Res. Atmos., 117 (D2). , https://doi.org/10.1029/2011JD016342

Citas:

---------- APA ----------
Schmidt, C., Dunker, T., Lichtenstern, S., Scheer, J., Wüst, S., Hoppe, U.-P. & Bittner, M. (2018) . Derivation of vertical wavelengths of gravity waves in the MLT-region from multispectral airglow observations. Journal of Atmospheric and Solar-Terrestrial Physics, 173, 119-127.
http://dx.doi.org/10.1016/j.jastp.2018.03.002
---------- CHICAGO ----------
Schmidt, C., Dunker, T., Lichtenstern, S., Scheer, J., Wüst, S., Hoppe, U.-P., et al. "Derivation of vertical wavelengths of gravity waves in the MLT-region from multispectral airglow observations" . Journal of Atmospheric and Solar-Terrestrial Physics 173 (2018) : 119-127.
http://dx.doi.org/10.1016/j.jastp.2018.03.002
---------- MLA ----------
Schmidt, C., Dunker, T., Lichtenstern, S., Scheer, J., Wüst, S., Hoppe, U.-P., et al. "Derivation of vertical wavelengths of gravity waves in the MLT-region from multispectral airglow observations" . Journal of Atmospheric and Solar-Terrestrial Physics, vol. 173, 2018, pp. 119-127.
http://dx.doi.org/10.1016/j.jastp.2018.03.002
---------- VANCOUVER ----------
Schmidt, C., Dunker, T., Lichtenstern, S., Scheer, J., Wüst, S., Hoppe, U.-P., et al. Derivation of vertical wavelengths of gravity waves in the MLT-region from multispectral airglow observations. J. Atmos. Sol.-Terr. Phys. 2018;173:119-127.
http://dx.doi.org/10.1016/j.jastp.2018.03.002