Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In recent years much has been learned about how a single computational processing step is implemented in the brain. By contrast, we still have surprisingly little knowledge of the neuronal mechanisms by which multiple such operations are sequentially assembled into mental algorithms. We outline a theory of how individual neural processing steps might be combined into serial programs. We propose a hybrid neuronal device: each step involves massively parallel computation that feeds a slow and serial production system. Production selection is mediated by a system of competing accumulator neurons that extends the role of these neurons beyond the selection of a motor action. Productions change the state of sensory and mnemonic neurons and iteration of such cycles provides a basis for mental programs. © 2011 Elsevier Ltd.

Registro:

Documento: Artículo
Título:The human Turing machine: A neural framework for mental programs
Autor:Zylberberg, A.; Dehaene, S.; Roelfsema, P.R.; Sigman, M.
Filiación:Laboratory of Integrative Neuroscience, Physics Department, FCEyN UBA and IFIBA, Ciudad Universitaria, Conicet; Pabellón 1, 1428 Buenos Aires, Argentina
Instituto de Ingeniería Biomédica, Universidad de Buenos Aires, 1063 Buenos Aires, Argentina
INSERM, Cognitive Neuroimaging Unit, CEA, Bât 145, Point Courrier 156, Gif sur Yvette, 91191, France
CEA, DSV, I2BM and Neurospin Center, Gif sur Yvette, 91191, France
Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
The Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, Netherlands
Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, Netherlands
Palabras clave:Computational processing; Motor actions; Neural-processing; Parallel Computation; Serial production system; Turing machines; behavior; brain function; brain turing machine; cognition; conceptual framework; decision making; electrophysiology; eye movement; global neuronal workspace model; human; mental function; mental health; model; motor performance; nerve cell; review; visual cortex; working memory; Animals; Brain; Brain Mapping; Computer Simulation; Humans; Mental Processes; Models, Neurological; Neurons
Año:2011
Volumen:15
Número:7
Página de inicio:293
Página de fin:300
DOI: http://dx.doi.org/10.1016/j.tics.2011.05.007
Título revista:Trends in Cognitive Sciences
Título revista abreviado:Trends Cogn. Sci.
ISSN:13646613
CODEN:TCSCF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13646613_v15_n7_p293_Zylberberg

Referencias:

  • Boole, G., (1854) An Investigation of the Laws of Thought, , Cosimo
  • Turing, A.M., On computable numbers, with an application to the Entscheidungsproblem (1936) Proc. Lond. Math. Soc., 2, pp. 230-265
  • Von Neumann, J., (1958) The Computer and the Brain, , Yale University Press
  • Rumelhart, D.E., McClelland, J.L., (1986) Parallel Distributed Processing: Explorations In The Microstructure Of Cognition. Volume 1. Foundations, , MIT Press
  • Felleman, D.J., Van Essen, D.C., Distributed hierarchical processing in the primate cerebral cortex (1991) Cereb. Cortex, 1, pp. 1-47
  • Pouget, A., Inference and computation with population codes (2003) Annu. Rev. Neurosci., 26, pp. 381-410
  • Buonomano, D.V., Merzenich, M.M., Cortical plasticity: from synapses to maps (1998) Annu. Rev. Neurosci., 21, pp. 149-186
  • Schyns, P.G., Information processing algorithms in the brain (2009) Trends Cogn. Sci., 13, pp. 20-26
  • Smith, M.L., From a face to its category via a few information processing states in the brain (2007) Neuroimage, 37, pp. 974-984
  • Gazzaniga, M.S., Neuroscience and the correct level of explanation for understanding mind (2010) Trends Cogn. Sci., 14, pp. 291-292
  • Laird, J.E., Soar: an architecture for general intelligence (1987) Artif. Intell., 33, pp. 1-64
  • Anderson, J.R., Lebiere, C., (1998) The Atomic Components of Thought, , Lawrence Erlbaum Associates
  • Meyer, D.E., Kieras, D.E., A computational theory of executive cognitive processes and multiple-task performance: part 1. Basic mechanisms (1997) Psychol. Rev., 104, pp. 3-65
  • Post, E.L., Formal reductions of the general combinatorial decision problem (1943) Am. J. Math., 65, pp. 197-215
  • Roelfsema, P.R., Subtask sequencing in the primary visual cortex (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 5467-5472
  • Romo, R., Salinas, E., Flutter discrimination: neural codes, perception, memory and decision making (2003) Nat. Rev. Neurosci., 4, pp. 203-218
  • Moro, S.I., Neuronal activity in the visual cortex reveals the temporal order of cognitive operations (2010) J. Neurosci., 30, pp. 16293-16303
  • Wald, A., Wolfowitz, J., Optimum character of the sequential probability ratio test (1948) Ann. Math. Statist., 19, pp. 326-339
  • Gold, J.I., Shadlen, M.N., The neural basis of decision making (2007) Annu. Rev. Neurosci., 30, pp. 535-574
  • Smith, P.L., Ratcliff, R., Psychology and neurobiology of simple decisions (2004) Trends Neurosci., 27, pp. 161-168
  • Philiastides, M.G., Sajda, P., Temporal characterization of the neural correlates of perceptual decision making in the human brain (2006) Cereb. Cortex, 16, p. 509
  • Freedman, D.J., Assad, J.A., A proposed common neural mechanism for categorization and perceptual decisions (2011) Nat. Neurosci., 14, pp. 143-146
  • Sigman, M., Dehaene, S., Parsing a cognitive task: a characterization of the mind's bottleneck (2005) PLoS Biol., 3, pp. e37
  • Shadlen, M.N., Neurobiology of decision making: an intentional framework (2008) Better than Conscious?: Decision Making, the Human Mind, and Implications for Institutions, pp. 71-101. , The MIT Press, C. Engel, W. Singer (Eds.)
  • Gold, J.I., Shadlen, M.N., The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands (2003) J. Neurosci., 23, pp. 632-651
  • Lo, C.C., Wang, X.J., Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks (2006) Nat. Neurosci., 9, pp. 956-963
  • Khayat, P.S., Time course of attentional modulation in the frontal eye field during curve tracing (2009) J. Neurophysiol., 101, pp. 1813-1822
  • Bruce, C.J., Goldberg, M.E., Primate frontal eye fields. I. Single neurons discharging before saccades (1985) J. Neurophysiol., 53, pp. 603-635
  • Sackur, J., Dehaene, S., The cognitive architecture for chaining of two mental operations (2009) Cognition, 111, pp. 187-211
  • Funahashi, S., Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex (1989) J. Neurophysiol., 61, pp. 331-349
  • Fuster, J.M., Jervey, J.P., Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli (1981) Science, 212, pp. 952-955
  • Harrison, S.A., Tong, F., Decoding reveals the contents of visual working memory in early visual areas (2009) Nature, 458, pp. 632-635
  • Freedman, D.J., Assad, J.A., Experience-dependent representation of visual categories in parietal cortex (2006) Nature, 443, pp. 85-88
  • Wallis, J.D., Single neurons in prefrontal cortex encode abstract rules (2001) Nature, 411, pp. 953-956
  • Machens, C.K., Flexible control of mutual inhibition: a neural model of two-interval discrimination (2005) Science, 307, pp. 1121-1124
  • Zylberberg, A., Neurophysiological bases of exponential sensory decay and top-down memory retrieval: a model (2009) Front. Comput. Neurosci., 3, pp. 1-16
  • Dehaene, S., A neuronal network model linking subjective reports and objective physiological data during conscious perception (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 8520-8525
  • Dehaene, S., Changeux, J.P., Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness (2005) PLoS Biol., 3, pp. e141
  • Newell, A., (1972) Human Problem Solving, , Prentice-Hall
  • Newell, A., (1990) Unified Theories of Cognition, , Harvard University Press
  • Roitman, J.D., Shadlen, M.N., Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task (2002) J. Neurosci., 22, pp. 9475-9489
  • Mongillo, G., Synaptic theory of working memory (2008) Science, 319, pp. 1543-1546
  • Gilbert, C.D., Sigman, M., Brain states: top-down influences in sensory processing (2007) Neuron, 54, pp. 677-696
  • Roelfsema, P.R., Object-based attention in the primary visual cortex of the macaque monkey (1998) Nature, 395, pp. 376-381
  • Roelfsema, P.R., Elemental operations in vision (2005) Trends Cogn. Sci., 9, pp. 226-233
  • Wise, S.P., Mauritz, K.H., Set-related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set (1985) Proc. R. Soc. Lond. B: Biol. Sci., 223, pp. 331-354
  • Sutton, R.S., Barto, A.G., (1998) Reinforcement Learning: An Introduction, , The MIT press
  • Roelfsema, P.R., van Ooyen, A., Attention-gated reinforcement learning of internal representations for classification (2005) Neural Comput., 17, pp. 2176-2214
  • Zylberberg, A., The brain's router: a cortical network model of serial processing in the primate brain (2010) PLoS Comput. Biol., 6, pp. 1385-1411
  • Gegenfurtner, K.R., Sperling, G., Information transfer in iconic memory experiments (1993) J. Exp. Psychol. Hum. Percept. Perform., 19, pp. 845-866
  • Enns, J.T., Di Lollo, V., What's new in visual masking? (2000) Trends Cogn. Sci., 4, pp. 345-352
  • Raymond, J.E., Temporary suppression of visual processing in an RSVP task: an attentional blink? (1992) J. Exp. Psychol. Hum. Percept. Perform., 18, pp. 849-860
  • Pashler, H., Dual-task interference in simple tasks: data and theory (1994) Psychol. Bull., 116, pp. 220-244
  • Fuentemilla, L., Theta-coupled periodic replay in working memory (2010) Curr. Biol., 20, pp. 606-612
  • Lee, H., Phase locking of single neuron activity to theta oscillations during working memory in monkey extrastriate visual cortex (2005) Neuron, 45, pp. 147-156
  • Fujii, N., Graybiel, A.M., Representation of action sequence boundaries by macaque prefrontal cortical neurons (2003) Science, 301, pp. 1246-1249
  • Buschman, T.J., Miller, E.K., Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices (2007) Science, 315, pp. 1860-1862
  • Koechlin, E., Jubault, T., Broca's area and the hierarchical organization of human behavior (2006) Neuron, 50, pp. 963-974
  • Pashler, H., Processing stages in overlapping tasks: evidence for a central bottleneck (1984) J. Exp. Psychol. Hum. Percept. Perform., 10, pp. 358-377
  • Sergent, C., Timing of the brain events underlying access to consciousness during the attentional blink (2005) Nat. Neurosci., 8, pp. 1391-1400
  • Wong, K.F.E., The relationship between attentional blink and psychological refractory period (2002) J. Exp. Psychol. Hum. Percept. Perform., 28, pp. 54-71
  • Corallo, G., Limits on introspection (2008) Psychol. Sci., 19, pp. 1110-1117
  • Kihlstrom, J.F., The cognitive unconscious (1987) Science, 237, pp. 1445-1452
  • Logan, G.D., Schulkind, M.D., Parallel memory retrieval in dual-task situations: I. Semantic memory (2000) J. Exp. Psychol. Hum. Percept. Perform., 26, pp. 1072-1090
  • Tombu, M., Jolicoeur, P., A central capacity sharing model of dual-task performance (2003) J. Exp. Psychol. Hum. Percept. Perform., 29, pp. 3-18
  • Miller, J., Hackley, S.A., Electrophysiological evidence for temporal overlap among contingent mental processes (1992) J. Exp. Psychol. Gen., 121, pp. 195-209
  • Levy, J., Pashler, H., Does perceptual analysis continue during selection and production of a speeded response? (1995) Acta Psychol. (Amst.), 90, pp. 245-260
  • Lau, H.C., Passingham, R.E., Unconscious activation of the cognitive control system in the human prefrontal cortex (2007) J. Neurosci., 27, pp. 5805-5811
  • Ullman, S., Visual routines (1984) Cognition, 18, pp. 97-159
  • Grossberg, S., Raizada, R.D.S., Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex (2000) Vision Res., 40, pp. 1413-1432
  • Hamker, F.H., The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement (2005) Cereb. Cortex, 15, pp. 431-447
  • Van Der Velde, F., De Kamps, M., From knowing what to knowing where: modeling object-based attention with feedback disinhibition of activation (2001) J. Cogn. Neurosci., 13, pp. 479-491

Citas:

---------- APA ----------
Zylberberg, A., Dehaene, S., Roelfsema, P.R. & Sigman, M. (2011) . The human Turing machine: A neural framework for mental programs. Trends in Cognitive Sciences, 15(7), 293-300.
http://dx.doi.org/10.1016/j.tics.2011.05.007
---------- CHICAGO ----------
Zylberberg, A., Dehaene, S., Roelfsema, P.R., Sigman, M. "The human Turing machine: A neural framework for mental programs" . Trends in Cognitive Sciences 15, no. 7 (2011) : 293-300.
http://dx.doi.org/10.1016/j.tics.2011.05.007
---------- MLA ----------
Zylberberg, A., Dehaene, S., Roelfsema, P.R., Sigman, M. "The human Turing machine: A neural framework for mental programs" . Trends in Cognitive Sciences, vol. 15, no. 7, 2011, pp. 293-300.
http://dx.doi.org/10.1016/j.tics.2011.05.007
---------- VANCOUVER ----------
Zylberberg, A., Dehaene, S., Roelfsema, P.R., Sigman, M. The human Turing machine: A neural framework for mental programs. Trends Cogn. Sci. 2011;15(7):293-300.
http://dx.doi.org/10.1016/j.tics.2011.05.007