Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aims: To study the modification of the cell wall of Lactobacillus casei ATCC 393 grown in high salt conditions. Methods and Results: Differences in the overall structure of cell wall between growth in high salt (MRS + 1 mol l -1 NaCl; N condition) and control (MRS; C condition) conditions were determined by transmission electronic microscopy and analytical procedures. Lactobacillus casei cells grown in N condition were significantly larger than cells grown under unstressed C condition. Increased sensitivity to mutanolysin and antibiotics with target in the cell wall was observed in N condition. Purified cell wall also showed the increased sensitivity to lysis by mutanolysin. Analysis of peptidoglycan (PG) from stressed cells showed that modification was at the structural level in accordance with a decreased PG cross-link involving penicillin-binding proteins (PBP). Nine PBP were first described in this species and these proteins were expressed in low percentages or presented a modified pattern of saturation with penicillin G (Pen G) during growth in high salt. Three of the essential PBP were fully saturated in N condition at lower Pen G concentrations than in C condition, suggesting differences in functionality in vivo. Conclusions: The results show that growth in high salt modified the structural properties of the cell wall. Significance and Impact of Study: Advances in understanding the adaptation to high osmolarity, in particular those involving sensitivity to lysis of lactic acid bacteria.

Registro:

Documento: Artículo
Título:Cell wall modifications during osmotic stress in Lactobacillus casei
Autor:Piuri, M.; Sanchez-Rivas, C.; Ruzal, S.M.
Filiación:Departamento de Quimica Biologica, Fac. Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
Palabras clave:Lactobacillus casei; Osmotic stress; PBP; Peptidoglycan; ampicillin; antibiotic agent; bacitracin; enzyme; fosfomycin; mutanolysin; nisin; penicillin binding protein; penicillin G; peptidoglycan; sodium chloride; unclassified drug; vancomycin; cytology; microbiology; osmoregulation; stress; analytic method; antibiotic sensitivity; article; bacterial cell; bacterial cell wall; cell growth; controlled study; cytolysis; in vivo study; lactic acid bacterium; Lactobacillus casei; lysis; nonhuman; osmolarity; osmotic stress; purification; sensitivity analysis; transmission electron microscopy; Bacteriological Techniques; Cell Wall; Drug Resistance; Electrophoresis, Polyacrylamide Gel; Hydrolysis; Lactobacillus casei; Microscopy, Electron; Osmosis; Penicillin-Binding Proteins; Peptidoglycan; Bacteria (microorganisms); Lactobacillus; Lactobacillus casei; Posibacteria
Año:2005
Volumen:98
Número:1
Página de inicio:84
Página de fin:95
DOI: http://dx.doi.org/10.1111/j.1365-2672.2004.02428.x
Título revista:Journal of Applied Microbiology
Título revista abreviado:J. Appl. Microbiol.
ISSN:13645072
CODEN:JAMIF
CAS:ampicillin, 69-52-3, 69-53-4, 7177-48-2, 74083-13-9, 94586-58-0; bacitracin, 1405-87-4; fosfomycin, 23155-02-4; mutanolysin, 55466-22-3; nisin, 1414-45-5; penicillin G, 1406-05-9, 61-33-6; peptidoglycan, 9047-10-3; sodium chloride, 7647-14-5; vancomycin, 1404-90-6, 1404-93-9; Penicillin-Binding Proteins; Peptidoglycan
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_13645072_v98_n1_p84_Piuri.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13645072_v98_n1_p84_Piuri

Referencias:

  • De Ambrosini, V.M., Gonzalez, S., Perdigon, G., De Ruiz Holgado, A.P., Oliver, G., Chemical composition of the cell wall of lactic acid bacteria and related species (1996) Chemical and Pharmaceutical Bulletin (Tokyo), 44, pp. 2263-2267
  • Araki, Y., Nakatani, T., Nakayama, K., Ito, E., Occurrence of N-nonsubstituted glucosamine residues in peptidoglycan of lysozyme-resistant cell walls from Bacillus cereus (1972) Journal of Biological Chemistry, 247, pp. 6312-6322
  • Billot-Klein, D., Gutmann, L., Sable, S., Guittet, E., Van Heijenoort, J., Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum (1994) Journal of Bacteriology, 176, pp. 2398-2405
  • Billot-Klein, D., Legrand, R., School, B., Van Heijenoort, J., Gutmann, L., Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics (1997) Journal of Bacteriology, 179, pp. 6208-6212
  • Crow, V.L., Coolbear, T., Gopal, P.K., Martley, F.G., McKay, L.L., Riepe, H., The role of autolysis of lactic acid bacteria in the ripening of cheese (1995) International Dairy Journal, 5, pp. 855-875
  • Delcour, J., Ferain, T., Deghorain, M., Palumbo, E., Hols, P., The biosynthesis and functionality of the cell-wall of lactic acid bacteria (1999) Antonie Van Leeuwenhoek, 76, pp. 159-184
  • Driehuis, F., De Jonge, B., Nanninga, N., Cross-linkage and cross-linking of peptidoglycan in Escherichia coli: Definition, determination, and implications (1992) Journal of Bacteriology, 174, pp. 2028-2031
  • Fox, P.P., Wallace, J.M., Morgan, S., Lynch, C.M., Niland, E.J., Tobin, J., Acceleration of cheese ripening (1996) Antonie Van Leeuwenhoek, 70, pp. 271-297
  • Ghuysen, J.M., Molecular structures of penicillin-binding proteins and beta-lactamases (1994) Trends in Microbiology, 2, pp. 372-380
  • Glaasker, E., Heuberger, E.H., Konings, W.N., Poolman, B., Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum (1998) Journal of Bacteriology, 180, pp. 5540-5546
  • Griaznova, N.S., Subbotina, N.A., Beliavskaia, I.V., Taisova, A.S., Afonin, V.I., Tiurin, M.V., Shenderov, B.A., Sazykina, Iu.O., Penicillin-binding proteins of various strains of Lactobacillus (1990) Antibiot Khimioter, 35, pp. 15-19
  • Handwerger, S., Pucci, M.J., Volk, K.J., Liu, J., Lee, M.S., Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate (1994) Journal of Bacteriology, 176, pp. 260-264
  • Jackson, P., High-resolution polyacrylamide gel electrophoresis of fluorophore-labeled reducing saccharides (1994) Guide to Techniques in Glycobiology. Methods in Enzymology, 230, pp. 250-265. , ed. Lennarz, W.J. and Hart, G.W. San Diego, CA: Academic Press
  • De Jonge, B.L., Handwerger, S., Gage, D., Altered peptidoglycan composition in vancomycin-resistant Enterococcus faecalis (1996) Antimicrobial Agents and Chemotherapy, 40, pp. 863-869
  • Logardt, I.M., Neujahr, H.Y., Lysis of modified walls from Lactobacillus fermentum (1975) Journal of Bacteriology, 124, pp. 73-77
  • Lopez, C.S., Heras, H., Ruzal, S.M., Sanchez-Rivas, C., Rivas, E.A., Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium (1998) Current Microbiology, 36, pp. 55-61
  • Machado, M.C., Lopez, C.S., Heras, H., Rivas, E.A., Osmotic response in Lactobacillus casei ATCC 393: Biochemical and biophysical characteristics of membrane (2004) Archives of Biochemistry and Biophysics, 422, pp. 61-70
  • Mainardi, J.L., Billot-Klein, D., Coutrot, A., Legrand, R., Schoot, B., Gutmann, L., Resistance to cefotaxime and peptidoglycan composition in Enterococcus faecalis are influenced by exogenous sodium chloride (1998) Microbiology, 144, pp. 2679-2685
  • Meury, J., Glycine-betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli (1988) Archives in Microbiology, 149, pp. 232-239
  • Neuhaus, F.C., Baddiley, J., A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria (2003) Microbiology and Molecular Biology Reviews, 67, pp. 686-723
  • Peschel, A., Vuong, C., Otto, M., Gotz, F., The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes (2000) Antimicrobial Agents and Chemotherapy, 44, pp. 2845-2847
  • Piuri, M., Sanchez-Rivas, C., Ruzal, S.M., Adaptation to high salt in Lactobacillus: Role of peptides and proteolytic enzymes (2003) Journal of Applied Microbiology, 95, pp. 372-379
  • Popham, D.L., Young, K.D., Role of penicillin-binding proteins in bacterial cell morphogenesis (2003) Current Opinion in Microbiology, 6, pp. 594-599
  • Reissig, J.L., Strominger, J.L., Leloir, L.F., A modified colorimetric method for the estimation of N-acetylamino sugars (1955) Journal of Biological Chemistry, 217, pp. 959-966
  • Ruzal, S.M., Lopez, C., Rivas, E., Sanchez-Rivas, C., Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis (1998) Current Microbiology, 36, pp. 75-79
  • Van Der Heide, T., Stuart, M.C., Poolman, B., On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine (2001) EMBO Journal, 20, pp. 7022-7032
  • Vijaranakul, U., Nadakavukaren, M.J., De Jonge, B.L., Wilkinson, B.J., Jayaswal, R.K., Increased cell size and shortened peptidoglycan interpeptide bridge of NaCl-stressed Staphylococcus aureus and their reversal by glycine betaine (1995) Journal of Bacteriology, 111, pp. 5116-5121
  • Young, K.D., A simple gel electrophoretic method for analyzing the muropeptide composition of bacterial peptidoglycan (1996) Journal of Bacteriology, 178, pp. 3962-3966
  • Zarlenga, L.J., Gilmore, M.S., Sahm, D.F., Effects of amino acids on expression of enterococcal vancomycin resistance (1992) Antimicrobial Agents and Chemotherapy, 36, pp. 902-905
  • Zhao, G., Meier, T.I., Kahl, S.D., Gee, K.R., Blaszczak, L.C., BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins (1999) Antimicrobial Agents and Chemotherapy, 43, pp. 1124-1128

Citas:

---------- APA ----------
Piuri, M., Sanchez-Rivas, C. & Ruzal, S.M. (2005) . Cell wall modifications during osmotic stress in Lactobacillus casei. Journal of Applied Microbiology, 98(1), 84-95.
http://dx.doi.org/10.1111/j.1365-2672.2004.02428.x
---------- CHICAGO ----------
Piuri, M., Sanchez-Rivas, C., Ruzal, S.M. "Cell wall modifications during osmotic stress in Lactobacillus casei" . Journal of Applied Microbiology 98, no. 1 (2005) : 84-95.
http://dx.doi.org/10.1111/j.1365-2672.2004.02428.x
---------- MLA ----------
Piuri, M., Sanchez-Rivas, C., Ruzal, S.M. "Cell wall modifications during osmotic stress in Lactobacillus casei" . Journal of Applied Microbiology, vol. 98, no. 1, 2005, pp. 84-95.
http://dx.doi.org/10.1111/j.1365-2672.2004.02428.x
---------- VANCOUVER ----------
Piuri, M., Sanchez-Rivas, C., Ruzal, S.M. Cell wall modifications during osmotic stress in Lactobacillus casei. J. Appl. Microbiol. 2005;98(1):84-95.
http://dx.doi.org/10.1111/j.1365-2672.2004.02428.x