Piccinni, F.E.; Ontañon, O.M.; Ghio, S.; Sauka, D.H.; Talia, P.M.; Rivarola, M.L.; Valacco, M.P.; Campos, E. "Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates" (2019) Journal of Applied Microbiology. 126(3):811-825
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Aims: Lignocellulosic biomass deconstruction is a bottleneck for obtaining biofuels and value-added products. Our main goal was to characterize the secretome of a novel isolate, Cellulomonas sp. B6, when grown on residual biomass for the formulation of cost-efficient enzymatic cocktails. Methods and Results: We identified 205 potential CAZymes in the genome of Cellulomonas sp. B6, 91 of which were glycoside hydrolases (GH). By secretome analysis of supernatants from cultures in either extruded wheat straw (EWS), grinded sugar cane straw (SCR) or carboxymethylcellulose (CMC), we identified which proteins played a role in lignocellulose deconstruction. Growth on CMC resulted in the secretion of two exoglucanases (GH6 and GH48) and two GH10 xylanases, while growth on SCR or EWS resulted in the identification of a diversity of CAZymes. From the 32 GHs predicted to be secreted, 22 were identified in supernatants from EWS and/or SCR cultures, including endo- and exoglucanases, xylanases, a xyloglucanase, an arabinofuranosidase/β-xylosidase, a β-glucosidase and an AA10. Surprisingly, among the xylanases, seven were GH10. Conclusions: Growth of Cellulomonas sp. B6 on lignocellulosic biomass induced the secretion of a diverse repertoire of CAZymes. Significance and Impact of the Study: Cellulomonas sp. B6 could serve as a source of lignocellulose-degrading enzymes applicable to bioprocessing and biotechnological industries. © 2018 The Society for Applied Microbiology


Documento: Artículo
Título:Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates
Autor:Piccinni, F.E.; Ontañon, O.M.; Ghio, S.; Sauka, D.H.; Talia, P.M.; Rivarola, M.L.; Valacco, M.P.; Campos, E.
Filiación:Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repetto (1686), Hurlingham, Buenos Aires, Argentina
Instituto de Microbiología y Zoología Agrícola, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolas Repetto (1686), Hurlingham, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:cazymes; cellulomonas; gh10; glucanases; glycosyl hydrolases; lignocellulose; secretome; xylanases; arabinofuranosidase; bacterial DNA; bacterial enzyme; bacterial RNA; carboxymethylcellulose; exoglucanase; glucan synthase; glycosidase; lignocellulose; RNA 16S; unclassified drug; xylan 1,4 beta xylosidase; xylan endo 1,3 beta xylosidase; xyloglucanase; bacterium; biofuel; biotechnology; biotransformation; cellulose; crop residue; enzyme activity; genome; lignin; secretion; straw; Article; bacterial genome; bacterial growth; bacterium culture; biomass; Cellulomonas; Cellulomonas aerilata; Cellulomonas biazotea; Cellulomonas bogoriensis; Cellulomonas carbonis; Cellulomonas cellasea; Cellulomonas chitinilytica; Cellulomonas composti; Cellulomonas denverensis; Cellulomonas fimi; Cellulomonas flavigena; Cellulomonas gelida; Cellulomonas hominis; Cellulomonas humilata; Cellulomonas iranensis; Cellulomonas marina; Cellulomonas massiliensis; Cellulomonas oligotrophica; Cellulomonas pakistanensis; Cellulomonas phragmiteti; Cellulomonas soli; Cellulomonas terrae; Cellulomonas uda; Cellulomonas xylanilytica; controlled study; DNA DNA hybridization; enzyme activity; enzyme substrate; Micrococcus luteus; nonhuman; phylogeny; protein secretion; RNA sequence; sugarcane; Cellulomonas; Cellulomonas sp.; Saccharum; Triticum aestivum
Página de inicio:811
Página de fin:825
Título revista:Journal of Applied Microbiology
Título revista abreviado:J. Appl. Microbiol.
CAS:arabinofuranosidase, 138263-79-3; carboxymethylcellulose, 8050-38-2, 9000-11-7, 9004-32-4, 9050-04-8; glucan synthase, 55126-98-2, 74191-29-0; glycosidase, 9032-92-2; lignocellulose, 11132-73-3; xylan 1,4 beta xylosidase, 9025-53-0; xylan endo 1,3 beta xylosidase, 37278-89-0, 9025-55-2


  • Agarwala, R., Barrett, T., Beck, J., Benson, D.A., Bollin, C., Bolton, E., Bourexis, D., Brister, J.R., Database resources of the national center for biotechnology information (2017) Nucleic Acids Res, 44 (D1), pp. D7-D19
  • Ahmed, I., Kudo, T., Abbas, S., Ehsan, M., Iino, T., Fujiwara, T., Ohkuma, M., Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria (2014) Int J Syst Evol Microbiol, 64, pp. 2305-2311
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410
  • Amaya-Delgado, L., Vega-Estrada, J., Flores-Cotera, L.B., Dendooven, L., Hidalgo-Lara, M.E., Montes-Horcasitas, M.C., Induction of xylanases by sugar cane bagasse at different cell densities of Cellulomonas flavigena (2006) Appl Microbiol Biotechnol, 70, pp. 477-481
  • Auch, A.F., von Jan, M., Klenk, H.-P., Göker, M., Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison (2010) Stand Genomic Sci, 2, pp. 117-134
  • Bayer, E.A., Chanzy, H., Lamed, R., Shoham, Y., Cellulose, cellulases and cellulosomes (1998) Curr Opin Struct Biol, 8, pp. 548-557
  • Bertani, G., Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli (1951) J Bacteriol, 62, pp. 293-300
  • Bhat, M.K., Cellulases and related enzymes in biotechnology (2000) Biotechnol Adv, 18, pp. 355-383
  • Bhattacharya, A.S., Bhattacharya, A., Pletschke, B.I., Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production (2015) Biotechnol Lett, 37, pp. 1117-1129
  • Biely, P., Singh, S., Puchart, V., Towards enzymatic breakdown of complex plant xylan structures: state of the art (2016) Biotechnol Adv, 34, pp. 1260-1274
  • Bomble, Y.J., Lin, C.Y., Amore, A., Wei, H., Holwerda, E.K., Ciesielski, P.N., Donohoe, B.S., Decker, S.R., Lignocellulose deconstruction in the biosphere (2017) Curr Opin Chem Biol, 41, pp. 61-70
  • Campos, E., Negro Alvarez, M.J., Sabarís di Lorenzo, G., Gonzalez, S., Rorig, M., Talia, P., Grasso, D.H., Sáez, F., Purification and characterization of a GH43 β-xylosidase from Enterobacter sp. identified and cloned from forest soil bacteria (2014) Microbiol Res, 169, pp. 213-220
  • Christopherson, M.R., Suen, G., Bramhacharya, S., Jewell, K.A., Aylward, F.O., Mead, D., Brumm, P.J., The genome sequences of Cellulomonas fimi and “Cellvibrio gilvus” reveal the cellulolytic strategies of two facultative anaerobes, transfer of “Cellvibrio gilvus” to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov (2013) PLoS One, 8
  • Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Ribosomal database project: data and tools for high throughput rRNA analysis (2014) Nucleic Acids Res, 42, pp. 633-642
  • Din, N., Beck, C.F., Miller, R.C., Kilburn, D.G., Warren, R.A.J., Expression of the Cellulomonas fimi cellulase genes cex and cenA from the divergent tet promoters of transposon Tn10 (1990) Arch Microbiol, 153, pp. 129-133
  • Dyrløv Bendtsen, J., Kiemer, L., Fausbøll, A., Brunak, S., Non-classical protein secretion in bacteria (2005) BMC Microbiol, 5, pp. 58-71
  • Elberson, M.A., Malekzadeh, F., Yazdi, M.T., Kameranpour, N., Noori-Daloii, M.R., Matte, M.H., Shahamat, M., Colwell, R.R., Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils (2000) Int J Syst Evol Microbiol, 50, pp. 993-996
  • Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap (1985) Evolution, 39, pp. 783-791
  • Gao, J., Wakarchuk, W., Characterization of five β-glycoside hydrolases from Cellulomonas fimi ATCC 484 (2014) J Bacteriol, 196, pp. 4103-4110
  • Ghio, S., Di Lorenzo, G.S., Lia, V., Talia, P., Cataldi, A., Grasso, D., Campos, E., Isolation of Paenibacillus sp. and Variovorax sp. strains from decaying woods and characterization of their potential for cellulose deconstruction (2012) Int J Biochem Mol Biol, 3, pp. 352-364
  • Ghio, S., Ontañon, O.M., Piccinni, F.E., Marrero Diaz, R., Talia, P.M., Grasso, D.H., Campos, E., Paenibacillus sp. A59 GH10 and GH11 extracellular endoxylanases: application in biomass bioconversion (2018) Bioenerg Res, 11, pp. 174-190
  • Ghose, T.K., Bisaria, V.S., International Union of Pure Commission on Biotechnology. Measurement of cellulase activities (1987) Pure Appl Chem, 59, pp. 257-268
  • Gomez Del Pulgar, E.M., Saadeddin, A., The cellulolytic system of Thermobifida fusca (2014) Crit Rev Microbiol, 40, pp. 236-247
  • Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., Tiedje, J.M., DNA-DNA hybridization values and their relationship to whole-genome sequence similarities (2007) Int J Syst Evol Microbiol, 57, pp. 81-91
  • Hatayama, K., Esaki, K., Ide, T., Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil (2013) Int J Syst Evol Microbiol, 63, pp. 60-65
  • Hemsworth, G.R., Dejean, G., Davies, G.J., Brumer, H., Learning from microbial strategies for polysaccharide degradation (2016) Biochem Soc Trans, 44, pp. 94-108
  • Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., Mann, M., Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein (2005) Mol Cell Proteomics, 4, pp. 1265-1272
  • Käll, L., Krogh, A., Sonnhammer, E.L.L., A combined transmembrane topology and signal peptide prediction method (2004) J Mol Biol, 338, pp. 1027-1036
  • Kane, S.D., French, C.E., Characterisation of novel biomass degradation enzymes from the genome of Cellulomonas fimi (2018) Enzyme Microb Technol, 113, pp. 9-17
  • Kruer-Zerhusen, N., Alahuhta, M., Lunin, V.V., Himmel, M.E., Bomble, Y.J., Wilson, D.B., Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues (2017) Biotechnol Biofuels, 10, pp. 1-12
  • Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets (2016) Mol Biol Evol, 33, pp. 1870-1874
  • Lamed, R., Setter, E., Bayer, E., Characterization of a cellulose-binding, cellulose-containing complex in Clostridium thermocellum (1983) J Bacteriol, 156, pp. 828-836
  • Lisov, A.V., Belova, O.V., Lisova, Z.A., Vinokurova, N.G., Nagel, A.S., Andreeva-Kovalevskaya, Z.I., Budarina, Z.I., Nagornykh, M.O., Xylanases of Cellulomonas flavigena: expression, biochemical characterization, and biotechnological potential (2017) AMB Express, 7 (1), p. 5
  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., Henrissat, B., The carbohydrate-active enzymes database (CAZy) in 2013 (2014) Nucleic Acids Res, 42, pp. 490-495
  • Loose, J.S.M., Forsberg, Z., Kracher, D., Scheiblbrandner, S., Ludwig, R., Eijsink, V.G.H., Vaaje-Kolstad, G., Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase (2016) Protein Sci, 25, pp. 2175-2186
  • Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S., Microbial cellulose utilization: fundamentals and biotechnology (2002) Microbiol Mol Biol Rev, 66 (3), pp. 506-577
  • Lynd, L.R., Liang, X., Biddy, M.J., Allee, A., Cai, H., Foust, T., Himmel, M.E., Laser, M.S., Cellulosic ethanol: status and innovation (2017) Curr Opin Biotechnol, 45, pp. 202-211
  • Mayorga-Reyes, L., Morales, Y., Salgado, L.M., Ortega, A., Ponce-Noyola, T., Cellulomonas flavigena: characterization of an endo-1,4-xylanase tightly induced by sugarcane bagasse (2002) FEMS Microbiol Lett, 214, pp. 205-209
  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.-P., Göker, M., Genome sequence-based species delimitation with confidence intervals and improved distance functions (2013) BMC Bioinformatics, 14, p. 60
  • Meinke, A., Gilkes, N.R., Kwan, E., Kilburn, D.G., Warren, R.A.J., Miller, R.C., Cellobiohydrolase A (CbhA) from the cellulolytic bacterium Cellulomonas fimi is a beta-1,4-exocellobiohydrolase analogous to Trichoderma reesei CBH II (1994) Mol Microbiol, 12, pp. 413-422
  • Mischnick, P., Momcilovic, D., Chemical structure analysis of starch and cellulose derivatives (2010) Adv Carbohydr Chem Biochem, 64, pp. 117-120
  • Pauly, M., Gille, S., Liu, L., Mansoori, N., de Souza, A., Schultink, A., Xiong, G., Hemicellulose biosynthesis (2013) Planta, 238 (4), pp. 627-642
  • Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions (2011) Nat Methods, 8, pp. 785-786
  • Piccinni, F.E., Murua, Y., Ghio, S., Talia, P., Rivarola, M.L., Campos, E., Draft genome sequence of cellulolytic and xylanolytic Cellulomonas sp. strain B6 isolated from forest soil (2016) Genome Announc, 4
  • Ponce-Noyola, T., De La Torre, M., Regulation of cellulases and xylanases from a derepressed mutant of Cellulomonas flavigena growing on sugar-cane bagasse in continuous culture (2001) Bioresour Technol, 78, pp. 285-291
  • Rusznyák, A., Tóth, E.M., Schumann, P., Spröer, C., Makk, J., Szabó, G., Vladár, P., Márialigeti, K., Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond (2011) Int J Syst Evol Microbiol, 61, pp. 1662-1666
  • Saitou, N., Nei, M., The neighbor-joining method – a new method for reconstructing phylogenetic trees (1987) Mol Biol Evol, 4, pp. 406-425
  • Sánchez-Herrera, L.M., Ramos-Valdivia, A.C., De La Torre, M., Salgado, L.M., Ponce-Noyola, T., Differential expression of cellulases and xylanases by Cellulomonas flavigena grown on different carbon sources (2007) Appl Microbiol Biotechnol, 77, pp. 589-595
  • Santiago-Hernández, A., Vega-Estrada, J., Del Carmen Montes-Horcasitas, M., Hidalgo-Lara, M.E., Purification and characterization of two sugarcane bagasse-absorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena (2007) J Ind Microbiol Biotechnol, 34, pp. 331-338
  • Shallom, D., Shoham, Y., Microbial hemicellulases (2003) Curr Opin Microbiol, 6, pp. 219-228
  • Shen, H., Gilkes, N.R., Kilburn, D.G., Miller, R.C., Warren, R.A., Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi (1995) Biochem J, 311, pp. 67-74
  • Shinoda, K., Tomita, M., Ishihama, Y., emPAI Calc—for the estimation of protein abundance from large-scale identification data by liquid chromatography-tandem mass spectrometry (2010) Bioinformatics, 26, pp. 576-577
  • Spertino, S., Boatti, L., Icardi, S., Manfredi, M., Cattaneo, C., Marengo, E., Cavaletto, M., Cellulomonas fimi secretomes: in vivo and in silico approaches for the lignocellulose bioconversion (2018) J Biotechnol, 270, pp. 21-29
  • Stackebrandt, E., Schumann, P., Cellulomonas (2015) Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1-14. , eds., Whitman, W.B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B., Dedysh, S., Hoboken, NJ, John Wiley & Sons Inc
  • Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Mol Biol Evol, 10, pp. 512-526
  • Thompson, C.C., Chimetto, L., Edwards, R.A., Swings, J., Stackebrandt, E., Thompson, F.L., Microbial genomic taxonomy (2013) BMC Genom, 14, p. 931
  • Toushik, S.H., Lee, K.T., Lee, J.S., Kim, K.S., Functional applications of lignocellulolytic enzymes in the fruit and vegetable processing industries (2017) J Food Sci, 82, pp. 585-593
  • Wakarchuk, W.W., Brochu, D., Foote, S., Robotham, A., Saxena, H., Erak, T., Kelly, J., Proteomic analysis of the secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482 (2016) PLoS ONE, 11 (3)
  • Yang, Y., Zhang, L., Guo, M., Sun, J., Matsukawa, S., Xie, J., Wei, D., Novel α-L-Arabinofuranosidase from Cellulomonas fimi ATCC 484 and its substrate-specificity analysis with the aid of computer (2015) J Agric Food Chem, 63, pp. 3725-3733
  • Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., Xu, Y., DbCAN: a web resource for automated carbohydrate-active enzyme annotation (2012) Nucleic Acids Res, 40, pp. 445-451
  • Zhang, L., Xi, L., Qiu, D., Song, L., Dai, X., Ruan, J., Huang, Y., Cellulomonas marina sp. nov., isolated from deepsea water (2013) Int J Syst Evol Microbiol, 63, pp. 3014-3018
  • Zhao, L., Geng, J., Guo, Y., Liao, X., Liu, X., Wu, R., Zheng, Z., Zhang, R., Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization (2015) BMC Biotechnol, 15, p. 18
  • Zhuang, W., Zhang, S., Xia, X., Wang, G., Draft genome sequence of Cellulomonas carbonis T26 T and comparative analysis of six Cellulomonas genomes (2015) Stand Genomic Sci, 10, p. 104


---------- APA ----------
Piccinni, F.E., Ontañon, O.M., Ghio, S., Sauka, D.H., Talia, P.M., Rivarola, M.L., Valacco, M.P.,..., Campos, E. (2019) . Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates. Journal of Applied Microbiology, 126(3), 811-825.
---------- CHICAGO ----------
Piccinni, F.E., Ontañon, O.M., Ghio, S., Sauka, D.H., Talia, P.M., Rivarola, M.L., et al. "Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates" . Journal of Applied Microbiology 126, no. 3 (2019) : 811-825.
---------- MLA ----------
Piccinni, F.E., Ontañon, O.M., Ghio, S., Sauka, D.H., Talia, P.M., Rivarola, M.L., et al. "Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates" . Journal of Applied Microbiology, vol. 126, no. 3, 2019, pp. 811-825.
---------- VANCOUVER ----------
Piccinni, F.E., Ontañon, O.M., Ghio, S., Sauka, D.H., Talia, P.M., Rivarola, M.L., et al. Secretome profile of Cellulomonas sp. B6 growing on lignocellulosic substrates. J. Appl. Microbiol. 2019;126(3):811-825.