Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aims: To investigate multiple tolerance of Saccharomyces cerevisiae obtained through a laboratory strategy of adaptive evolution in acetic acid, its relation with enzymatic ROS detoxification and bioethanol 2G production. Methods and Results: After adaptive evolution in acetic acid, a clone (Y8A) was selected for its tolerance to high acetic acid concentrations (13 g l−1) in batch cultures. Y8A was resistant to multiple stresses: osmotic, thermic, oxidative, saline, ethanol, organic acid, phenolic compounds and slow freeze-thawing cycles. Also, Y8A was able to maintain redox homeostasis under oxidative stress, whereas the isogenic parental strain (Y8) could not, indicating higher basal activity levels of antioxidative enzyme Catalase (CAT) and Gluthatione S-transferase (GST) in Y8A. Y8A reached higher bioethanol levels in a fermentation medium containing up to 8 g l−1 of acetic acid when compared to parental strain Y8. Conclusions: A multiple-stress-tolerant clone was obtained using adaptive evolution in acetic acid. Stress cross-tolerance could be explained by its enzymatic antioxidative capacity, namely CAT and GST. Significance and Impact of the Study: We demonstrate that adaptive evolution used in S. cerevisiae was a useful strategy to obtain a yeast clone tolerant to multiple stresses. At the same time, our findings support the idea that tolerance to oxidative stress is the common basis for stress cotolerance, which is related to an increase in the specific enzymes CAT and GST but not in Superoxide dismutase, emphasizing the fact that detoxification of H2O2 and not O2˙ is a key condition for multiple stress tolerance in S. cerevisiae. © 2018 The Society for Applied Microbiology

Registro:

Documento: Artículo
Título:Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability
Autor:Gurdo, N.; Novelli Poisson, G.F.; Juárez, Á.B.; Rios de Molina, M.C.; Galvagno, M.A.
Filiación:IIB – Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martin, UNSAM – Campus Miguelete, Buenos Aires, San Martin, Argentina
Facultad de Ingeniería, Departamento de Ingeniería Química, Laboratorio de Microbiología Industrial, Pabellón de Industrias, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental – IBBEA-CONICET, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica – IQUIBICEN-CONICET, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:acetic acid; adaptive evolution; antioxidative enzymes; bioethanol 2G production; multiple tolerance; robustness; Saccharomyces cerevisiae; yeast; acetic acid; alcohol; bioethanol; carboxylic acid; catalase; glutathione transferase; phenol derivative; protein; reactive oxygen metabolite; sodium chloride; acetic acid; antioxidant; Saccharomyces cerevisiae protein; acetic acid; adaptive radiation; antioxidant; biofuel; concentration (composition); detoxification; enzyme; enzyme activity; evolutionary biology; homeostasis; oxidative stress; tolerance; yeast; adaptation; antioxidant activity; Article; biofuel production; clone; cross tolerance; enzymatic assay; enzyme activity; freeze thawing; fungal strain; fungus culture; nonhuman; osmotic stress; oxidative stress; protein content; Saccharomyces cerevisiae; stress; drug effect; enzymology; metabolism; physiology; Saccharomyces cerevisiae; Acetic Acid; Antioxidants; Ethanol; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins
Año:2018
Volumen:125
Número:3
Página de inicio:766
Página de fin:776
DOI: http://dx.doi.org/10.1111/jam.13917
Título revista:Journal of Applied Microbiology
Título revista abreviado:J. Appl. Microbiol.
ISSN:13645072
CODEN:JAMIF
CAS:acetic acid, 127-08-2, 127-09-3, 64-19-7, 71-50-1; alcohol, 64-17-5; catalase, 9001-05-2; glutathione transferase, 50812-37-8; protein, 67254-75-5; sodium chloride, 7647-14-5; Acetic Acid; Antioxidants; Ethanol; Saccharomyces cerevisiae Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13645072_v125_n3_p766_Gurdo

Referencias:

  • Adams, M.R., Moss, M.O., Methods for the microbial examination of foods (2000) Food microbiology, pp. 377-380. , 2nd edn, Cambridge, UK, The Royal Society of Chemistry
  • Aebi, H., Catalase in vitro (1984) Methods Enzymol, 105, pp. 121-126
  • Attfield, P.V., Stress tolerance: the key to effective strains of industrial baker's yeast (1997) Nat Biotechnol, 15, pp. 1351-1357
  • Baek, S.H., Kwon, E.Y., Kim, Y.H., Hahn, J.S., Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae (2016) Appl Microbiol Biotechnol, 100, pp. 2737-2748
  • Bathia, L., Johri, S., Ahmad, R., An economic and ecological perspective of ethanol production from renewable agro waste: a review (2012) AMB Express, 2, p. 65
  • Beauchamp, C., Fidrovich, I., Superoxide dismutase: improved assays and assay applicable to acrylamide gels (1971) Anal Biochem, 44, pp. 276-287
  • Bradford, M.M., Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Bray, R.C., Cockle, S.A., Fielden, E.M., Roberts, P.B., Rotilio, G., Calabrese, L., Reduction and inactivation of superoxide dismutase by hydrogen peroxide (1974) Biochem J, 139, pp. 43-48
  • Çakar, Z.P., Seker, U.O., Tamerler, C., Sonderegger, M., Sauer, U., Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae (2005) FEMS Yeast Res, 5, pp. 569-578
  • Çakar, Z.P., Turanli-Yildiz, B., Alkim, C., Yilmaz, U., Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties (2012) FEMS Yeast Res, 12, pp. 171-182
  • Chen, Y., Stabryla, L., Wei, N., Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering (2016) Appl Environ Microbiol, 82, pp. 2156-2166
  • Gayol, M.F., Labuckas, D.O., Oberti, J.C., Grosso, N.R., Guzmán, C.A., Quality and chemical composition of residual cakes obtained by pressing jojoba seeds produced in La Rioja, Argentina (2007) J Argentine Chem Soc, 95, pp. 39-47
  • Giannattasio, S., Guaragnella, N., Corte-Real, M., Passarella, S., Marra, E., Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death (2005) Gene, 354, pp. 93-98
  • González-Ramos, D., Gorter de Vries, A.R., Grijseels, S.S., van Berkum, M.C., Swinnen, S., van den Broek, M., Nevoigt, E., Daran, G.M., A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of casual mutation (2016) Biotechnol Biofuels, 9, p. 173
  • Guan, N., Li, J., Shin, H.D., Du, G., Chen, J., Liu, L., Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacteriumjensenii (2015) Biotechnol Bioeng, 113, pp. 1294-1304
  • Habig, W., Pabst, M., Jakoby, W., Glutathione S-transferases. The first enzymatic step in mercapturic acid formation (1974) J Biol Chem, 249, pp. 7130-7139
  • Jiang, Y., Ren, F., Liu, S., Zhao, L., Guo, H., Hou, C., Acid tolerance in Bifidobacterium longum by adaptive evolution: comparison of the genes between the acid-resistant variant and wild-type strain (2016) J Microbiol Biotechnol, 26, pp. 452-460
  • Jun, H., Jiayi, C., Metabolic engineering of Saccharomyces cerevisiae for increased bioconversion of lignocellulose to ethanol (2012) Indian J Microbiol, 52, pp. 442-448
  • Kronberg, F., Nikel, P., Cerrutti, P., Galvagno, M., Modelling the freezing response of baker's yeast prestressed cells: a statistical approach (2007) J Appl Micriobiol, 104, pp. 716-727
  • Lewis, J., Learmonth, R., Attfield, P., Watson, K., Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae (1997) J Ind Microbiol Biotechnol, 18, pp. 30-36
  • Ludovico, P., Sousa, M.J., Silva, M.T., Leão, C., Côrte-Real, M., Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid (2001) Microbiology, 147, pp. 2409-2415
  • Martani, F., Fossati, T., Posteri, R., Signori, L., Porro, D., Branduarti, P., Different response to acetic acid stress in Saccharomyces cerevisiae wild-type and L-ascorbic acid-producing strain (2013) Yeast, 9, pp. 365-378
  • Mendes-Ferreira, A., Sampaio-Marques, B., Barbosa, C., Rodrigues, F., Costa, V., Mendes-Faia, A., Ludovico, P., Leão, C., Accumulation of non-superoxide anion reactive oxygen species mediates nitrogen-limited alcoholic fermentation by Saccharomyces cerevisiae (2010) Appl Environ Microbiol, 76, pp. 7918-7924
  • Moradas-Ferreira, P., Costa, V., Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defenses, damage and death (2000) Redox Rep, 5, pp. 277-285
  • Moradas-Ferreira, P., Costa, V., Piper, P., Mager, W., The molecular defenses against reactive oxygen species in yeast (1996) Mol Microbiol, 19, pp. 651-658
  • Nikel, P., Pettinari, J., Galvagno, M., Méndez, B., Poly(3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis (2006) Appl Environ Microbiol, 72, pp. 2614-2620
  • Perrone, G., Tan, S., Dawes, I., Reactive oxygen species and yeast apoptosis (2005) Biochim Biophy Acta – Mol Cell Res, 1783, pp. 1354-1368
  • Sokal, R.R., Rohlf, F.J., (1999) Introducción a la Bioestadística, , Barcelona, Spain, Reverté
  • Swidah, R., Wang, H., Reid, P.J., Ahmed, H.Z., Pisanelli, A.M., Persaud, K.C., Grant, C.M., Ashe, M.P., Butanol production in S. cerevisiae via a synthetic ABE pathway is enhanced by specific metabolic engineering and butanol resistance (2015) Biotechnol Biofuels, 8, p. 97
  • Trček, J., Mira, N.P., Jarboe, L.R., Adaptation and tolerance of bacteria against acetic acid (2015) Appl Microbiol Biotechnol, 99, pp. 6215-6229
  • Ukibe, K., Hashida, K., Yoshida, N., Takagi, H., Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance (2009) Appl Environ Microbiol, 75, pp. 7205-7211
  • Wallace-Salinas, V., Gorwa-Grauslund, M.F., Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature (2013) Biotechnol Biofuels, 6, p. 151
  • Zhang, L., Onda, K., Imai, R., Fukuda, R., Horiuchi, H., Ohta, A., Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae (2003) Biochem Biophys Res Commun, 307, pp. 308-314

Citas:

---------- APA ----------
Gurdo, N., Novelli Poisson, G.F., Juárez, Á.B., Rios de Molina, M.C. & Galvagno, M.A. (2018) . Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability. Journal of Applied Microbiology, 125(3), 766-776.
http://dx.doi.org/10.1111/jam.13917
---------- CHICAGO ----------
Gurdo, N., Novelli Poisson, G.F., Juárez, Á.B., Rios de Molina, M.C., Galvagno, M.A. "Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability" . Journal of Applied Microbiology 125, no. 3 (2018) : 766-776.
http://dx.doi.org/10.1111/jam.13917
---------- MLA ----------
Gurdo, N., Novelli Poisson, G.F., Juárez, Á.B., Rios de Molina, M.C., Galvagno, M.A. "Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability" . Journal of Applied Microbiology, vol. 125, no. 3, 2018, pp. 766-776.
http://dx.doi.org/10.1111/jam.13917
---------- VANCOUVER ----------
Gurdo, N., Novelli Poisson, G.F., Juárez, Á.B., Rios de Molina, M.C., Galvagno, M.A. Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability. J. Appl. Microbiol. 2018;125(3):766-776.
http://dx.doi.org/10.1111/jam.13917