Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aims: The aim of this work is to analyse the effect of pH, fungal identity and P chemical nature on microbial development and phosphatase release, discussing solubilization and mineralization processes in P cycling. Methods and Results: P solubilizing fungi (Talaromyces flavus, T. helicus L, T. helicus N, T. diversus and Penicillium purpurogenum) were grown under three pH conditions (6, 6·5 and 8·5) and with different inorganic (calcium, iron, aluminium and rock) and organic (lecithin and phytate) P sources. P solubilization, mineralization, growth and phosphatase production were recorded. Acid and neutral environments maximized fungal development and P recycling. P chemical nature changed the phosphatases release pattern depending on the fungal identity. Acid phosphatase activity was higher than alkaline phosphatases, regardless of pH or sample times. Alkaline phosphatases were affected by a combination of those factors. Conclusions: P chemical nature and pH modify fungal growth, P mineralization and solubilization processes. The underlying fungal identity-dependent metabolism governs the capacity and efficiency of P solubilization and mineralization. P solubilization and mineralization processes are interrelated and simultaneously present in soil fungi. Significance and Impact of the study: This study constitutes a reference work to improve the selection of fungal bioinoculants in different environmental conditions, highlighting their role in P cycling. © 2017 The Society for Applied Microbiology

Registro:

Documento: Artículo
Título:Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability
Autor:Della Mónica, I.F.; Godoy, M.S.; Godeas, A.M.; Scervino, J.M.
Filiación:Departamento de Biodiversidad y Biología Experimental, Instituto de Micología y Botánica (INMIBO) CONICET-FCEN, UBA, Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA) CONICET-FCEN, UBA, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCo, San Carlos de Bariloche, Río Negro, Argentina
Palabras clave:P mineralization; P solubilization; P solubilizing fungi; pH; phosphatase; acid phosphatase; alkaline phosphatase; aluminum; calcium; iron; phosphatase; phosphatidylcholine; phosphorus; phytate; fungal protein; phosphatase; phosphate; biomineralization; enzyme activity; fungus; inoculation; metabolism; microbial activity; nutrient availability; pH; phosphatase; phosphorus cycle; solubilization; Article; fungal development; fungus growth; mineralization; nonhuman; Penicillium purpurogenum; pH; phosphorus cycle; rock; solubilization; Talaromyces; Talaromyces diversus; Talaromyces flavus; Talaromyces helicus; chemistry; enzymology; genetics; metabolism; microbiology; Penicillium; pH; soil; Talaromyces; Fungi; Penicillium purpurogenum; Talaromyces flavus; Fungal Proteins; Hydrogen-Ion Concentration; Penicillium; Phosphates; Phosphoric Monoester Hydrolases; Soil; Soil Microbiology; Talaromyces
Año:2018
Volumen:124
Número:1
Página de inicio:155
Página de fin:165
DOI: http://dx.doi.org/10.1111/jam.13620
Título revista:Journal of Applied Microbiology
Título revista abreviado:J. Appl. Microbiol.
ISSN:13645072
CODEN:JAMIF
CAS:acid phosphatase, 9001-77-8, 9025-88-1; alkaline phosphatase, 9001-78-9; aluminum, 7429-90-5; calcium, 7440-70-2, 14092-94-5; iron, 14093-02-8, 53858-86-9, 7439-89-6; phosphatase, 9013-05-2; phosphatidylcholine, 55128-59-1, 8002-43-5; phosphorus, 7723-14-0; phytate, 14306-25-3, 7205-52-9; phosphate, 14066-19-4, 14265-44-2; Fungal Proteins; Phosphates; Phosphoric Monoester Hydrolases; Soil
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13645072_v124_n1_p155_DellaMonica

Referencias:

  • Aseri, G.K., Jain, N., Tarafdar, J.C., Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi arid soils of India (2009) Am J Agric Environ Sci, 5, pp. 564-570
  • Banik, R.M., Pandey, S.K., Selection of metal salts for alkaline phosphatase production using response surface methodology (2009) Food Res Int, 42, pp. 470-475
  • Beech, I.B., Paiva, M., Caus, M., Coutinho, C., Enzymatic activity and within biofilms of sulphate-reducing bacteria (2001) Biofilm Community Interactions: Chance or Necessity?, pp. 231-239. , In, ed., Gilbert, P.G., Allison, D., Brading, M., Verran, J., Walker, J., Powys, BioLine
  • Bünemann, E.K., Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients (2008) Soil Biol Biochem, 40, pp. 2116-2129
  • Dean, R.L., Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations (2002) Biochem Mol Biol Educ, 30, pp. 401-407
  • Della Mónica, I.F., Stefanoni Rubio, P.J., Cina, R.P., Recchi, M., Godeas, A.M., Scervino, J.M., Effects of the phosphate-solubilizing fungus Talaromyces flavus on the development and efficiency of the Gigaspora rosea-Triticum aestivum symbiosis (2014) Symbiosis, 64, pp. 25-32
  • Della Mónica, I.F., Saparrat, M.C.N., Godeas, A.M., Scervino, J.M., The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes (2015) Fungal Ecol, 17, pp. 10-17
  • Deubel, A., Merbach, W., Influence of Microorganisms on Phosphorus Bioavailability in Soils (2005) Microorganisms in Soils: Roles in Genesis and Functions, pp. 177-191. , In, eds., Varma, A., Buscot, F., Berlin Heidelberg, Springer
  • El-Tarabily, K.A., Nassar, A.H., Sivasithamparam, K., Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica (2008) Appl Soil Ecol, 39, pp. 161-171
  • Garcia-Lopez, A.M., Aviles, M., Delgado, A., Plant uptake of phosphorus from sparingly available P-sources as affected by Trichoderma asperellum T34 (2015) Agric Food Sci, 24, pp. 240-260
  • Garg, S., Bahl, G.S., Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils (2008) Bioresour Technol, 99, pp. 5773-5777
  • Gargova, S., Sariyska, M., Effect of culture conditions on the biosynthesis of Aspergillus niger phytase and acid phosphatase (2003) Enzyme Microb Technol, 32, pp. 231-235
  • Goldstein, A.H., Future trends in research on microbial phosphate solubilization: one hundred years of insolubility (2007) First International Meeting on Microbial Phosphate Solubilization, pp. 91-96. , In, ed., Velázquez, E., Rodríguez-Barrueco, C, Dordrecht, Springer Netherlands
  • Gyaneshwar, P., Kumar, G.N., Parekh, L.J., Effect of buffering on the phosphate-solubilizing ability of microorganisms (1998) World J Microbiol Biotechnol, 14, pp. 669-673
  • Illmer, P., Schinner, F., Solubilization of inorganic calcium phosphates—Solubilization mechanisms (1995) Soil Biol Biochem, 27, pp. 257-263
  • Jones, D.L., Organic acids in the rhizosphere – a critical review (1998) Plant Soil, 205, pp. 25-44
  • Jurinak, J.J., Dudley, L.M., Allen, M.F., Knight, W.G., The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: a thermodynamic study (1986) Soil Sci, 142, pp. 255-261
  • Kapri, A., Tewari, L., Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp (2010) Brazilian J Microbiol, 41, pp. 787-795
  • Kucey, R.M.N., Janzen, H.H., Leggett, M.E., Microbially mediated increases in plant-available phosphorus (1989) Adv Agron, 42, pp. 198-228
  • Kumar Adhya, T., Kumar, N., Reddy, G., Podile, A.R., Bee, H., Samantaray, B., Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils (2015) Curr Sci, 108, pp. 1280-1287
  • Ma, X.-F., Wright, E., Ge, Y., Bell, J., Xi, Y., Bouton, J.H., Wang, Z.-Y., Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes (2009) Plant Sci, 176, pp. 479-488
  • Manzoor, M., Abbasi, M.K., Sultan, T., Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion (2017) Geomicrobiol J, 34, pp. 81-95
  • Martínez, O.A., Crowley, D.E., Mora, M.L., Jorquera, M.A., Short-term study shows that phytate-mineralizing rhizobacteria inoculation affects the biomass, phosphorus (P) uptake and rhizosphere properties of cereal plants (2015) J Soil Sci Plant Nutr, 15, pp. 153-166
  • Nahas, E., Control of acid phosphatases expression from Aspergillus niger by soil characteristics (2015) Brazilian Arch Biol Technol, 58, pp. 658-666
  • Nautiyal, C.S., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms (1999) FEMS Microbiol Lett, 170, pp. 265-270
  • Oliveira, C.A., Alves, V.M.C., Marriel, I.E., Gomes, E.A., Scotti, M.R., Carneiro, N.P., Guimarães, C.T., Schaffert, R.E., Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome (2009) Soil Biol Biochem, 41, pp. 1782-1787
  • Pandey, A.K., White, H., Podila, G.K., Functional genomic approaches for mycorrhizal research (2007) Advanced Techniques in Soil Microbiology, pp. 17-30. , In, ed., Varma, A., Oelmüller, R, New York, Springer-Verlag Berlin Heidelberg
  • Pawar, V.C., Thaker, V.S., Acid phosphatase and invertase activities of Aspergillus niger (2009) Mycoscience, 50, pp. 323-330
  • Richardson, A.E., Soil microorganisms and phosphorus availability (1994) Soil Biota Management in Sustainable Farming Systems, pp. 50-62. , In, ed., Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., Grace, P.R., East Melbourne, Australia, CSIRO
  • Richardson, A.E., Simpson, R.J., Soil microorganisms mediating phosphorus availability update on microbial phosphorus (2011) Plant Physiol, 156, pp. 989-996
  • Richardson, A.E., Hadobas, P.A., Hayes, J.E., Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture (2000) Plant, Cell Environ, 23, pp. 397-405
  • Richardson, A.E., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., Ryan, M.H., Plant and microbial strategies to improve the phosphorus efficiency of agriculture (2011) Plant Soil, 349, pp. 121-156
  • Rodriguez, H., Fraga, R., Phosphate solubilizing bacteria and their role in plant growth promotion (1999) Biotechnol Adv, 17, pp. 319-339
  • Scervino, J.M., Mesa, M.P., Della Mónica, I.F., Recchi, M., Sarmiento Moreno, N., Godeas, A.M., Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization (2010) Biol Fertil Soils, 46, pp. 755-763
  • Scervino, J.M., Papinutti, V.L., Godoy, M.S., Rodriguez, M.A., Della Mónica, I.F., Recchi, M., Pettinari, M.J., Godeas, A.M., Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production (2011) J Appl Microbiol, 110, pp. 1215-1223
  • Sindhu, S.S., Phour, M., Choudhary, S.R., Chaudhary, D., Phosphorus Cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants (2014) Geomicrobiology and Biogeochemistry, pp. 199-237. , In, ed., Parmar, N., Singh, A., Berlin Heidelberg, Springer-Verlag
  • Stefanoni Rubio, P.J., Godoy, M.S., Della Mónica, I.F., Pettinari, M.J., Godeas, A.M., Scervino, J.M., Carbon and nitrogen sources influence Tricalcium phosphate solubilization and extracellular phosphatase activity by Talaromyces flavus (2016) Curr Microbiol, 72, pp. 41-47
  • Tarafdar, J.C., Claassen, N., Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms (1988) Biol Fertil Soils, 5, pp. 308-312
  • Tarafdar, J.C., Yadav, R.S., Meena, S.C., Comparative efficiency of acid phosphatase originated from plant and fungal sources (2001) J Plant Nutr Soil Sci, 164, pp. 279-282
  • Tarafdar, J.C., Bareja, M., Panwar, J., Efficiency of some phosphatase producing soil-fungi (2003) Indian J Microbiol, 43, pp. 27-32
  • Whitelaw, M.A., Growth promotion of plants inoculated with phosphate-solubilizing fungi (1999) Advances in Agronomy, pp. 99-151. , In, ed., Sparks, D.L, Elsevier, MA, USA, Academic Press
  • Whitelaw, M.A., Harden, T.J., Helyar, K.R., Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum (1999) Soil Biol Biochem, 31, pp. 655-665
  • Yadav, R.S., Tarafdar, J.C., Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants (2001) Biol Fertil Soils, 34, pp. 140-143
  • Yadav, R.S., Tarafdar, J.C., Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds (2003) Soil Biol Biochem, 35, pp. 745-751

Citas:

---------- APA ----------
Della Mónica, I.F., Godoy, M.S., Godeas, A.M. & Scervino, J.M. (2018) . Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability. Journal of Applied Microbiology, 124(1), 155-165.
http://dx.doi.org/10.1111/jam.13620
---------- CHICAGO ----------
Della Mónica, I.F., Godoy, M.S., Godeas, A.M., Scervino, J.M. "Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability" . Journal of Applied Microbiology 124, no. 1 (2018) : 155-165.
http://dx.doi.org/10.1111/jam.13620
---------- MLA ----------
Della Mónica, I.F., Godoy, M.S., Godeas, A.M., Scervino, J.M. "Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability" . Journal of Applied Microbiology, vol. 124, no. 1, 2018, pp. 155-165.
http://dx.doi.org/10.1111/jam.13620
---------- VANCOUVER ----------
Della Mónica, I.F., Godoy, M.S., Godeas, A.M., Scervino, J.M. Fungal extracellular phosphatases: their role in P cycling under different pH and P sources availability. J. Appl. Microbiol. 2018;124(1):155-165.
http://dx.doi.org/10.1111/jam.13620