Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aims: Analysis of the physiology and metabolism of Escherichia coli arcA and creC mutants expressing a bifunctional alcohol-acetaldehyde dehydrogenase from Leuconostoc mesenteroides growing on glycerol under oxygen-restricted conditions. The effect of an ldhA mutation and different growth medium modifications was also assessed. Methods and Results: Expression of adhE in E. coli CT1061 [arcA creC(Con)] resulted in a 1·4-fold enhancement in ethanol synthesis. Significant amounts of lactate were produced during micro-oxic cultures and strain CT1061LE, in which fermentative lactate dehydrogenase was deleted, produced up to 6·5 ± 0·3 g l-1 ethanol in 48 h. Escherichia coli CT1061LE derivatives resistant to >25 g l-1 ethanol were obtained by metabolic evolution. Pyruvate and acetaldehyde addition significantly increased both biomass and ethanol concentrations, probably by overcoming acetyl-coenzyme A (CoA) shortage. Yeast extract also promoted growth and ethanol synthesis, and this positive effect was mainly attributable to its vitamin content. Two-stage bioreactor cultures were conducted in a minimal medium containing 100 μg l-1 calcium d-pantothenate to evaluate oxic acetyl-CoA synthesis followed by a switch into fermentative conditions. Ethanol reached 15·4 ± 0·9 g l-1 with a volumetric productivity of 0·34 ± 0·02 g l-1 h-1. Conclusions: Escherichia coli responded to adhE over-expression by funnelling carbon and reducing equivalents into a highly reduced metabolite, ethanol. Acetyl-CoA played a key role in micro-oxic ethanol synthesis and growth. Significance and Impact of the Study: Insight into the micro-oxic metabolism of E. coli growing on glycerol is essential for the development of efficient industrial processes for reduced biochemicals production from this substrate, with special relevance to biofuels synthesis. © 2010 The Society for Applied Microbiology.

Registro:

Documento: Artículo
Título:Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides
Autor:Nikel, P.I.; Ramirez, M.C.; Pettinari, M.J.; Méndez, B.S.; Galvagno, M.A.
Filiación:Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Colectora Av. General Paz 5445, (B1650KNA) San Martín, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Autonoma de Buenos Aires, Argentina
Departamento de Ingeniería Química, Facultad de Ingeniería, Ciudad Autonoma de Buenos Aires, Argentina
Palabras clave:acetyl-CoA availability; alcohol-acetaldehyde dehydrogenase; Escherichia coli; glycerol metabolism; heterologous gene expression; microaerobiosis; microbial physiology; acetyl coenzyme A; alcohol; glycerol; lactate dehydrogenase; acetaldehyde; bacterium; biomass; bioreactor; carbon; developmental biology; enzyme activity; ethanol; fermentation; gene expression; industrial production; metabolism; metabolite; mutation; redox potential; vitamin; yeast; aerobic metabolism; article; bacterial strain; biomass; biosynthesis; Escherichia coli; fermentation; gene expression; Leuconostoc mesenteroides; nonhuman; Acetyl Coenzyme A; Alcohol Dehydrogenase; Aldehyde Oxidoreductases; Escherichia coli; Ethanol; Glycerol; Leuconostoc; Mutation; Oxidation-Reduction; Arca; Escherichia coli; Leuconostoc mesenteroides
Año:2010
Volumen:109
Número:2
Página de inicio:492
Página de fin:504
DOI: http://dx.doi.org/10.1111/j.1365-2672.2010.04668.x
Título revista:Journal of Applied Microbiology
Título revista abreviado:J. Appl. Microbiol.
ISSN:13645072
CODEN:JAMIF
CAS:acetyl coenzyme A, 72-89-9; alcohol, 64-17-5; glycerol, 56-81-5; lactate dehydrogenase, 9001-60-9; Acetyl Coenzyme A, 72-89-9; Alcohol Dehydrogenase, 1.1.1.1; Aldehyde Oxidoreductases, 1.2.-; Ethanol, 64-17-5; Glycerol, 56-81-5; acetaldehyde dehydrogenase, 1.2.1.5
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_13645072_v109_n2_p492_Nikel.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13645072_v109_n2_p492_Nikel

Referencias:

  • Attfield, P.V., Stress tolerance: The key to effective strains of industrial baker's yeast (1997) Nat Biotechnol, 15, pp. 1351-1357
  • Avison, M.B., Horton, R.E., Walsh, T.R., Bennett, P.M., Escherichia coli CreBC is a global regulator of gene expression that responds to growth in minimal media (2001) J Biol Chem, 276, pp. 26955-26961
  • Bai, F.W., Anderson, W.A., Moo-Young, M., Ethanol fermentation technologies from sugar and starch feedstocks (2008) Biotechnol Adv, 26, pp. 89-105
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Bunch, P.K., Mat-Jan, F., Lee, N.A., Clark, D.P., The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli (1997) Microbiology, 143, pp. 187-195
  • Clark, D.P., The fermentation pathways of Escherichia coli (1989) FEMS Microbiol Rev, 5, pp. 223-234
  • Dahod, S.K., Raw materials selection and medium development for industrial fermentation processes (1999) Manual of Industrial Microbiology and Biotechnology, pp. 213-220. , ed. Demain, A.L. Davies, J.E
  • Demain, A.L., Biosolutions to the energy problem (2009) J Ind Microbiol Biotechnol, 36, pp. 319-332
  • Dharmadi, Y., Murarka, A., Gonzalez, R., Anaerobic fermentation of glycerol by Escherichia coli: A new platform for metabolic engineering (2006) Biotechnol Bioeng, 94, pp. 821-829
  • Díaz-Ricci, J.C., Tsu, M., Bailey, J.M., Influence of expression of the pet operon on intracellular metabolic fluxes of Escherichia coli (1992) Biotechnol Bioeng, 39, pp. 59-65
  • Dombek, K.M., Ingram, L.O., Effects of ethanol on the Escherichia coli plasma membrane (1984) J Bacteriol, 157, pp. 233-239
  • Durnin, G., Clomburg, J., Yeates, Z., Álvarez, P.J.J., Zygourakis, K., Campbell, P., Gonzalez, R., Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli (2009) Biotechnol Bioeng, 103, pp. 148-161
  • Garrigues, C., Loubiere, P., Lindley, N.D., Cocaign-Bousquet, M., Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: Predominant role of the NADH/NAD+ ratio (1997) J Bacteriol, 179, pp. 5282-5287
  • Gokarn, R.R., Evans, J.D., Walker, J.R., Martin, S.A., Eiteman, M.A., Altman, E., The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli (2001) Appl Microbiol Biotechnol, 56, pp. 188-195
  • Gonzáles-Pajuelo, M., Andrade, J.C., Vasconcelos, I., Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol (2004) J Ind Microbiol Biotechnol, 31, pp. 442-446
  • Gonzalez, R., Tao, H., Purvis, J.E., York, S.W., Shanmugam, K.T., Ingram, L.O., Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: Comparison of KO11 (parent) to LY01 (resistant mutant) (2003) Biotechnol Prog, 19, pp. 612-623
  • Gonzalez, R., Murarka, A., Dharmadi, Y., Yazdani, S.S., A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli (2008) Metab Eng, 10, pp. 234-245
  • Hanahan, D., Techniques for transformation of Escherichia coli (1985) DNA Cloning: A Practical Approach, pp. 109-135. , ed. Glover, D.M
  • Ibrahim, M.H.A., Steinbüchel, A., Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol (2010) J Appl Microbiol, 108, pp. 214-225
  • Ingram, L.O., Ethanol tolerance in bacteria (1990) Crit Rev Biotechnol, 9, pp. 305-319
  • Ingram, L.O., Gomez, P.F., Lai, X., Moniruzzaman, M., Wood, B.E., Yomano, L.P., York, S.W., Metabolic engineering of bacteria for ethanol production (1998) Biotechnol Bioeng, 58, pp. 204-214
  • Izui, K., Taguchi, M., Morikawa, M., Katsuki, H., Regulation of Escherichia coli phosphoenolpyruvate carboxylase by multiple effectors in vivo. II. Kinetic studies with a reaction system containing physiological concentrations of ligands (1981) J Biochem, 90, pp. 1321-1331
  • Jarboe, L.R., Grabar, T.B., Yomano, L.P., Shanmugam, K.T., Ingram, L.O., Development of ethanologenic bacteria (2007) Adv Biochem Eng Biotechnol, 108, pp. 237-261
  • Jarvis, G.N., Moore, E.R.B., Thiele, J.H., Formate and ethanol are the major products of glycerol fermentation produced by a Klebsiella planticola strain isolated from red deer (1997) J Appl Microbiol, 83, pp. 166-174
  • Koo, O.K., Jeong, D.W., Lee, J.M., Kim, M.J., Lee, J.H., Chang, H.C., Kim, J.H., Lee, H.J., Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Leuconostoc mesenteroides isolated from kimchi (2005) Biotechnol Lett, 27, pp. 505-510
  • Lawford, H.G., Rousseau, J.D., Studies on nutrient requirements and cost-effective supplements for ethanol production by recombinant Escherichia coli (1996) Appl Microbiol Biotechnol, 5758, pp. 307-326
  • Lee, P.C., Lee, W.G., Lee, S.Y., Chang, H.N., Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniproducens using glycerol as a carbon source (2001) Biotechnol Bioeng, 72, pp. 41-48
  • Lin, Y., Tanaka, S., Ethanol fermentation from biomass resources: Current state and prospects (2006) Appl Microbiol Biotechnol, 69, pp. 627-642
  • MacKenzie, K.F., Eddy, C.K., Ingram, L.O., Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc (1989) J Bacteriol, 171, pp. 1063-1067
  • Murarka, A., Dharmadi, Y., Yazdani, S.S., Gonzalez, R., Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals (2008) Appl Environ Microbiol, 74, pp. 1124-1135
  • Neidhardt, F.C., Ingraham, J.L., Schaechter, M., (1990) Physiology of the Bacterial Cell: A Molecular Approach
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Méndez, B.S., Poly(3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis (2006) Appl Environ Microbiol, 72, pp. 2614-2620
  • Nikel, P.I., Pettinari, M.J., Galvagno, M.A., Méndez, B.S., Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures (2008) Appl Microbiol Biotechnol, 77, pp. 1337-1343
  • Nikel, P.I., De Almeida, A., Pettinari, M.J., Méndez, B.S., The legacy of HfrH: Mutations in the two-component system CreBC are responsible for the unusual phenotype of an Escherichia coli arcA mutant (2008) J Bacteriol, 190, pp. 3404-3407
  • Nikel, P.I., Pettinari, M.J., Ramirez, M.C., Galvagno, M.A., Méndez, B.S., Escherichia coli arcA mutants: Metabolic profile characterization of microaerobic cultures using glycerol as a carbon source (2008) J Mol Microbiol Biotechnol, 15, pp. 48-54
  • Nikel, P.I., Zhu, J., San, K.Y., Méndez, B.S., Bennett, G.N., Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions (2009) J Bacteriol, 191, pp. 5538-5548
  • Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., Ingram, L.O., Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II (1991) Appl Environ Microbiol, 57, pp. 893-900
  • Orencio-Trejo, M., Flores, N., Escalante, A., Hernández-Chávez, G., Bolívar, F., Gosset, G., Martinez, A., Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities (2008) Biotechnol Biofuels, 1, p. 8
  • Overath, P., Schairer, H.U., Stoffel, W., Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli (1970) Proc Natl Acad Sci USA, 67, pp. 606-612
  • Pettinari, M.J., Nikel, P.I., Ruiz, J.A., Méndez, B.S., ArcA redox mutants as a source of reduced bioproducts (2008) J Mol Microbiol Biotechnol, 15, pp. 41-47
  • Purvis, J.E., Yomano, L.P., Ingram, L.O., Enhanced trehalose production improves growth of Escherichia coli under osmotic stress (2005) Appl Environ Microbiol, 71, pp. 3761-3769
  • Richter, H., Vlad, D., Unden, G., Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production (2001) Arch Microbiol, 175, pp. 26-31
  • Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual
  • Schneider, K., Dimroth, P., Bott, M., Biosynthesis of the prosthetic group of citrate lyase (2000) Biochemistry, 39, pp. 9438-9450
  • Da Silva, G.P., MacK, M., Contiero, J., Glycerol: A promising and abundant carbon source for industrial microbiology (2009) Biotechnol Adv, 27, pp. 30-39
  • Stanley, G.A., Hobley, T.J., Pamment, N.B., Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks (1997) Biotechnol Bioeng, 53, pp. 71-78
  • Stephanopoulos, G., Challenges in engineering microbes for biofuels production (2007) Science, 315, pp. 801-804
  • Stephanopoulos, G., Aristidou, A.A., Nielsen, J., (1998) Metabolic Engineering: Principles and Methodologies
  • Sternberg, N.L., Maurer, R., Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium (1991) Methods in Enzymology (Bacterial Genetic Systems), pp. 18-43. , ed. Miller, J.H
  • Stewart, G.G., Panchal, C.J., Russell, I., Sills, M.A., Biology of ethanol-producing microorganisms (1983) Crit Rev Microbiol, 1, pp. 161-188
  • Trinh, C.T., Srienc, F., Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol (2009) Appl Environ Microbiol, 75, pp. 6696-6705
  • Underwood, S.A., Buszko, M.L., Shanmugam, K.T., Ingram, L.O., Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation (2002) Appl Environ Microbiol, 68, pp. 1071-1081
  • Vemuri, G.N., Aristidou, A.A., Metabolic engineering in the -omics era: Elucidating and modulating regulatory networks (2005) Microbiol Mol Biol Rev, 69, pp. 197-216
  • Vertès, A.A., Inui, M., Yukawa, H., Technological options for biological fuel ethanol (2008) J Mol Microbiol Biotechnol, 15, pp. 16-30
  • Weber, A.E., San, K.Y., A comparison of two plating techniques to estimate plasmid stability of a prolonged chemostat culture (1989) BioTechniques, 3, pp. 397-400
  • Weitzman, P.D.J., Regulation of citrate synthase activity in Escherichia coli (1966) Biochim Biophys Acta, 128, pp. 213-215
  • Yang, Y., San, K.Y., Bennett, G.N., The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in Escherichia coli (2001) Metab Eng, 1, pp. 141-152
  • Yazdani, S.S., Gonzalez, R., Anaerobic fermentation of glycerol: A path to economic viability for the biofuels industry (2007) Curr Opin Biotechnol, 18, pp. 213-219
  • Yazdani, S.S., Gonzalez, R., Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products (2008) Metab Eng, 10, pp. 340-351
  • Zaldivar, J., Nielsen, J., Olsson, L., Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration (2001) Appl Microbiol Biotechnol, 56, pp. 17-34
  • Zaunmüller, T., Eichert, M., Richter, H., Unden, G., Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids (2006) Appl Microbiol Biotechnol, 72, pp. 421-429
  • Zhou, S., Grabar, T.B., Shanmugam, K.T., Ingram, L.O., Betaine tripled the volumetric productivity of D(-)-lactate by Escherichia coli B strain SZ132 in mineral salts medium (2006) Biotechnol Lett, 28, pp. 671-676

Citas:

---------- APA ----------
Nikel, P.I., Ramirez, M.C., Pettinari, M.J., Méndez, B.S. & Galvagno, M.A. (2010) . Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides. Journal of Applied Microbiology, 109(2), 492-504.
http://dx.doi.org/10.1111/j.1365-2672.2010.04668.x
---------- CHICAGO ----------
Nikel, P.I., Ramirez, M.C., Pettinari, M.J., Méndez, B.S., Galvagno, M.A. "Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides" . Journal of Applied Microbiology 109, no. 2 (2010) : 492-504.
http://dx.doi.org/10.1111/j.1365-2672.2010.04668.x
---------- MLA ----------
Nikel, P.I., Ramirez, M.C., Pettinari, M.J., Méndez, B.S., Galvagno, M.A. "Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides" . Journal of Applied Microbiology, vol. 109, no. 2, 2010, pp. 492-504.
http://dx.doi.org/10.1111/j.1365-2672.2010.04668.x
---------- VANCOUVER ----------
Nikel, P.I., Ramirez, M.C., Pettinari, M.J., Méndez, B.S., Galvagno, M.A. Ethanol synthesis from glycerol by Escherichia coli redox mutants expressing adhE from Leuconostoc mesenteroides. J. Appl. Microbiol. 2010;109(2):492-504.
http://dx.doi.org/10.1111/j.1365-2672.2010.04668.x