Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aims: To study the effect of prestress conditions on the freezing and thawing (FT) response of two baker's yeast strains and the use of statistical analysis to optimize resistance to freezing. Methods and Results: Tolerance to FT of industrial strains of Saccharomyces cerevisiae was associated to their osmosensitivity and growth phase. Pretreatments with sublethal stresses [40°C, 0·5 mol l-1 NaCl, 1·0 mol l-1 sorbitol or 5% (v/v) ethanol] increased freeze tolerance. Temperature or hyperosmotic prestresses increased trehalose contents, nevertheless no clear correlation was found with improved FT tolerance. Plackett-Burman design and response surface methodology were applied to improve freeze tolerance of the more osmotolerant strain. Optimal prestress conditions found were: 0·779 mol l-1 NaCl, 0·693% (v/v) ethanol and 32·15°C. Conclusions: Ethanol, saline, osmotic or heat prestresses increased freezing tolerance of two phenotypically distinct baker's yeast strains. A relationship among prestresses, survival and trehalose content was not clear. It was possible to statistically find optimal combined prestress conditions to increase FT tolerance of the osmotolerant strain. Significance and Impact of the Study: Statistically designed combination of prestress conditions that can be applied during the production of baker's yeast could represent a useful tool to increase baker's yeast FT resistance. © 2007 The Authors.

Registro:

Documento: Artículo
Título:Modelling the freezing response of baker's yeast prestressed cells: A statistical approach
Autor:Kronberg, M.F.; Nikel, P.I.; Cerrutti, P.; Galvagno, M.A.
Filiación:Instituto de Investigaciones Biotecnológicas, IIB-CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
Departamento de Ingeniería Química, Facultad de Ingeniería, Ciudad Universitaria, Buenos Aires, Argentina
Laboratorio de Microbiología Industrial, Departamento de Ingeniería Química, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
Palabras clave:Experimental design; Freeze tolerance; Prestressed baker's yeast; Response surface methodology; Survival; alcohol; sodium chloride; sorbitol; trehalose; experimental design; freeze tolerance; growth rate; modeling; optimization; statistical analysis; survival; yeast; article; cell stress; freezing; fungus growth; methodology; nonhuman; phenotype; Saccharomyces cerevisiae; statistics; survival; thawing; Ethanol; Food Microbiology; Freezing; Glucose; Microbial Viability; Models, Biological; Models, Statistical; Saccharomyces cerevisiae; Trehalose; Saccharomyces cerevisiae
Año:2008
Volumen:104
Número:3
Página de inicio:716
Página de fin:727
DOI: http://dx.doi.org/10.1111/j.1365-2672.2007.03588.x
Título revista:Journal of Applied Microbiology
Título revista abreviado:J. Appl. Microbiol.
ISSN:13645072
CODEN:JAMIF
CAS:alcohol, 64-17-5; sodium chloride, 7647-14-5; sorbitol, 26566-34-7, 50-70-4, 53469-19-5; trehalose, 99-20-7; Ethanol, 64-17-5; Glucose, 50-99-7; Trehalose, 99-20-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13645072_v104_n3_p716_Kronberg

Referencias:

  • Alves-Araújo, C., Almeida, M.J., Sousa, M.J., Leao, C., Freeze tolerance of the yeast Torulaspora delbrueckii: Cellular and biochemical basis (2004) FEMS Microbiol Lett, 240, pp. 7-14
  • Attfield, P.V., Stress tolerance: The key to effective strains of industrial baker's yeast (1997) Nat Biotechnol, 15, pp. 1351-1357
  • Attfield, P.V., Kletsas, S., Hazell, B.W., Concomitant appearance of intrinsic thermotolerance and storage of trehalose in Saccharomyces cerevisiae during early respiratory phase of batch-culture is CIF1-dependent (1994) Microbiology, 140, pp. 2625-2632
  • Bell, P.J.L., Higgins, V.J., Attfield, P.V., Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media (2001) Lett Appl Microbiol, 32, pp. 224-229
  • Box, G.E.P., Wilson, K.B., On the experimental attainment of optimum conditions (1951) J R Stat Soc Ser B, 13, pp. 1-45
  • Box, G.E.O., Hunter, W., Hunter, J., (1999) Statistics for Experimenters., , Barcelona: Reverté
  • Clegg, J., Seitzs, P., Seitzs, W., Hazelwood, C., Cellular responses to extreme water loss: The water-replacement hypothesis (1982) Cryobiology, 19, pp. 306-316
  • Crowe, J.H., Trehalose as a 'chemical chaperone': Fact and fantasy (2007) Adv Exp Med Biol, 594, pp. 143-158
  • Crowe, L., Crowe, J.H., Trehalose and dry dipalmitoyl phosphatidylcholine revisited (1988) Biochim Biophys Acta, 946, pp. 193-201
  • Crowe, L., Crowe, J.H., Lyotropic effects of water on phospholipids (1990) Water Science Reviews, pp. 1-23. , In. ed. Franks, F. pp. Cambridge: Cambridge University Press
  • D'Amore, P., Crumplen, R., Stewart, G., The involvement of trehalose in yeast stress tolerance (1991) J Ind Microbiol, 7, pp. 191-196
  • De Virgilio, C., Hottinger, T., Domínguez, J., Boller, T., Wiemken, A., The role of trehalose synthesis for the acquisition of thermotolerance in yeast (1994) Eur J Biochem, 219, pp. 179-186
  • Elbein, A.D., Pan, Y.T., Pastuszak, I., Carroll, D., New insights on trehalose: A multifunctional molecule (2003) Glycobiology, 13, pp. 17R-27R
  • Folch-Mallol, J.L., Garay-Arroyo, A., Lledias, F., Covarrubias Robles, A.A., The stress response in the yeast Saccharomyces cerevisiae (2004) Rev Latinoam Microbiol, 46, pp. 24-46
  • Franks, F., Mathias, S., Calfre, P., Webster, S., Brown, D., Ice nucleation and freezing in undercooled cells (1983) Cryobiology, 20, pp. 298-309
  • Galvagno, M.A., Cerrutti, P., Increase of rising activity of commercial yeasts by application of stress conditions during their propagation (2004) Rev Argent Microbiol, 36, pp. 41-46
  • Gancedo, C., Flores, C.L., The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi (2004) FEMS Yeast Res, 4, pp. 351-359
  • Gelinas, P., Fiset, G., Leduy, A., Goulet, J., Effect of growth conditions and trehalose content on cryotolerance of bakers' yeast in frozen doughs (1989) Appl Environ Microbiol, 55, pp. 2453-2459
  • Haaland, P., (1987) Experimental Design in Biotechnology., , New York: Marcel Dekker
  • Hatano, S., Udou, M., Koga, N., Honjoh, K., Miyamoto, T., Impairment of the glycolytic system and actin in baker's yeast during frozen storage (1996) Biosci Biotechnol Biochem, 60, pp. 61-64
  • Heggart, H.M., Margaritis, A., Pilkington, H., Stewart, R.J., Dowhanick, T.M., Russell, I., Factors affecting yeast viability and vitality characteristics: A review (1999) Tech Q, 36, pp. 383-406
  • Hernandez-Lopez, M.J., Prieto, J.A., Randez-Gil, F., Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains (2003) Antonie Van Leeuwenhoek, 84, pp. 125-134
  • Hounsa, C.G., Brandt, E.V., Thevelein, J., Hohmann, S., Prior, B.A., Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress (1998) Microbiology, 144, pp. 671-680
  • Kara, B., Simpson, W., Hammond, J., Prediction of the fermentation performance of brewing yeast with the acidification power test (1988) J Inst Brew, 94, pp. 153-158
  • Komatsu, Y., Kaul, S.C., Iwahashi, H., Obuchi, K., Do heat shock proteins provide protection against freezing? (1990) FEMS Microbiol Lett, 60, pp. 159-162
  • Lewis, J.G., Northcott, C., Learmonth, R.P., Attfield, P.V., Watson, K., The need for consistent nomenclature and assessment of growth phases in diauxic cultures of Saccharomyces cerevisiae (1993) J Gen Microbiol, 139, pp. 835-839
  • Lewis, J.G., Learmonth, R.P., Watson, K., Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae (1995) Microbiology, 141, pp. 687-694
  • Lewis, J.G., Learmonth, R.P., Attfield, P.V., Watson, K., Stress co-tolerance and trehalose content in baking strains of Saccharomyces cerevisiae (1997) J Ind Microbiol Biotechnol, 18, pp. 30-36
  • Mazur, P., Cryobiology: The freezing of biological systems (1970) Science, 168, pp. 939-949
  • Montgomery, D.C., (2001) Design and Analysis of Experiments., , New York: John Wiley & Sons
  • Panek, A.C., Vania, J.J., Paschoalin, M.F., Panek, D., Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts (1990) Biochimie, 72, pp. 77-79
  • Park, J.I., Grant, C.M., Attfield, P.V., Dawes, I.W., The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway (1997) Appl Environ Microbiol, 63, pp. 3818-3824
  • Park, J.I., Grant, C.M., Davies, M.J., Dawes, I.W., The cytoplasmic Cu, Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing (1998) J Biol Chem, 273, pp. 22921-22928
  • Randez-Gil, F., Sanz, P., Prieto, J.A., Engineering baker's yeast: Room for improvement (1999) Trends Biotechnol, 17, pp. 237-244
  • Ratnakumar, S., Tunnacliffe, A., Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast (2006) FEMS Yeast Res, 6, pp. 902-913
  • Sano, F., Asakawa, N., Inoue, Y., Sakurai, M., A dual role for intracellular trehalose in the resistance of yeast cells to water stress (1999) Cryobiology, 39, pp. 80-87
  • Shima, J., Sakata-Tsuda, Y., Suzuki, Y., Nakajima, R., Watanabe, H., Kawamoto, S., Takano, H., Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae (2003) Appl Environ Microbiol, 69, pp. 715-718
  • Siderius, M., Mager, W.H., General stress response: In search of a common denominator (1997) Yeast Stress Response, pp. 213-230. , In. ed. Hohmann, S. Mager, W.H. pp. Austin, TX: R.G. Landes Co
  • Slaugthter, J.C., Nomura, T., Intracellular glycogen and trehalose contents as predictors of yeast viability (1992) Enzyme Microb Technol, 14, pp. 64-67
  • Stanbury, P.F., Whitaker, A., Hall, S.J., Media for industrial fermentations (1986) Principles of Fermentation Technology, pp. 93-122. , eds (. In. pp. Oxford: Pergamon
  • Strobel, R., Sullivan, G., Experimental design for improvement of fermentation (1999) Manual of Industrial Microbiology and Biotechnology, pp. 80-93. , In. ed. Demain, A. Davies, J. pp. Washington DC: ASM Press
  • Takagi, H., Iwamoto, F., Nakamori, S., Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants (1997) Appl Microbiol Biotechnol, 47, pp. 405-411
  • Takagi, H., Sakai, K., Morida, K., Nakamori, S., Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae (2000) FEMS Microbiol Lett, 184, pp. 103-108
  • Tanghe, A., Van Dijck, P., Dumortier, F., Teunissen, A., Hohmann, S., Thevelein, J., Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains (2002) Appl Environ Microbiol, 68, pp. 5981-5989
  • Thevelein, J., De Wilde, J., Novel sensing mechanism and target for the cAMP-protein kinase a pathway in the yeast Saccharomyces cerevisiae (1999) Mol Microbiol, 33, pp. 904-918
  • Toner, M., Cravalho, E.G., Karel, M., Cellular response of mouse oocytes to freezing stress: Prediction of intracellular ice formation (1993) J Biomech Eng, 115, pp. 169-174
  • Winkler, K., Kienle, I., Burgert, M., Wagner, J.C., Holzer, H., Metabolic regulation of the trehalose content of vegetative yeast (1991) FEBS Lett, 291, pp. 269-272

Citas:

---------- APA ----------
Kronberg, M.F., Nikel, P.I., Cerrutti, P. & Galvagno, M.A. (2008) . Modelling the freezing response of baker's yeast prestressed cells: A statistical approach. Journal of Applied Microbiology, 104(3), 716-727.
http://dx.doi.org/10.1111/j.1365-2672.2007.03588.x
---------- CHICAGO ----------
Kronberg, M.F., Nikel, P.I., Cerrutti, P., Galvagno, M.A. "Modelling the freezing response of baker's yeast prestressed cells: A statistical approach" . Journal of Applied Microbiology 104, no. 3 (2008) : 716-727.
http://dx.doi.org/10.1111/j.1365-2672.2007.03588.x
---------- MLA ----------
Kronberg, M.F., Nikel, P.I., Cerrutti, P., Galvagno, M.A. "Modelling the freezing response of baker's yeast prestressed cells: A statistical approach" . Journal of Applied Microbiology, vol. 104, no. 3, 2008, pp. 716-727.
http://dx.doi.org/10.1111/j.1365-2672.2007.03588.x
---------- VANCOUVER ----------
Kronberg, M.F., Nikel, P.I., Cerrutti, P., Galvagno, M.A. Modelling the freezing response of baker's yeast prestressed cells: A statistical approach. J. Appl. Microbiol. 2008;104(3):716-727.
http://dx.doi.org/10.1111/j.1365-2672.2007.03588.x