Artículo

De Micco, L.; Larrondo, H.A.; Plastino, A.; Rosso, O.A. "Quantifiers for randomness of chaotic pseudo-random number generators" (2009) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 367(1901):3281-3296
Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. © 2009 The Royal Society.

Registro:

Documento: Artículo
Título:Quantifiers for randomness of chaotic pseudo-random number generators
Autor:De Micco, L.; Larrondo, H.A.; Plastino, A.; Rosso, O.A.
Filiación:Departamentos de Física y de Ingeniería Electrónica, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, 7600 Mar del Plata, Argentina
Instituto de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 727, 1900 La Plata, Argentina
University of Newcastle, School of Electrical, Hunter Medical Research Institute, University Drive, Callaghan NSW 2308, Australia
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Excess entropy; Permutation entropy; Random number; Rate entropy; Recurrence plots; Statistical complexity; Chaotic systems; Entropy; Number theory; Time series; Excess entropy; Permutation entropy; Random number; Rate entropy; Recurrence plots; Statistical complexity; Random number generation; article; nonlinear system; time; Nonlinear Dynamics; Time Factors
Año:2009
Volumen:367
Número:1901
Página de inicio:3281
Página de fin:3296
DOI: http://dx.doi.org/10.1098/rsta.2009.0075
Título revista:Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Título revista abreviado:Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
ISSN:1364503X
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_1364503X_v367_n1901_p3281_DeMicco.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1364503X_v367_n1901_p3281_DeMicco

Referencias:

  • Amigo, J.M., Kocarev, L., Tomovski, I., Discrete entropy (2007) Physica D: Nonlinear Phenomena, 228 (1), pp. 77-85. , DOI 10.1016/j.physd.2007.03.001, PII S0167278907000607
  • Bandt, C., Pompe, B., Permutation entropy: A natural complexity measure for time series (2002) Phys. Rev. Lett., 88 (174), pp. 102-111. , doi:10.1103/PhysRevLett.88.174102
  • Beck, C., Ergodic properties of a kicked damped particle (1990) Commun. Math. Phys., 130, pp. 51-60
  • Beck, C., Schlögl, F., (1997) Thermodynamics of Chaotic Systems: An Introduction, , Cambridge, UK: Cambridge University Press
  • Blanco, S., Figliola, A., Quian Quiroga, R., Rosso, O.A., Serrano, E., Time-frequency analysis of electroencephalogram series (iii): Wavelet packets and information cost function (1998) Phys. Rev. E, 57, pp. 932-940. , doi:10.1103/PhysRevE.57.932
  • Brown, R., Chua, L.O., Clarifying chaos: Examples and counterexamples (1996) Int. J. Bifurcat. Chaos, 6, pp. 219-249. , doi:10.1142/S0218127496000023
  • Callegari, S., Rovatti, R., Setti, G., Chaotic modulations can outperform random ones in electromagnetic interference reduction tasks (2002) Electronics Letters, 38 (12), pp. 543-544. , DOI 10.1049/el:20020381
  • Cornfeld, P., Fomin, S.V., Sinai, Y.G., (1982) Ergodic Theory, , New York, NY: Springer
  • Crutchfield, J.P., Packard, N.H., Symbolic dynamics of noisy chaos (1983) Physica D, 7, pp. 201-223. , doi:10.1016/0167-2789(83)90127-6
  • De Micco, L., Arizmendi, C.M., Larrondo, H.A., Zipping characterization of chaotic sequences used in spread spectrum communication systems (2007) IOP Conf. Proc., 913, pp. 139-144
  • De Micco, L., González, C.M., Larrondo, H.A., Martin, M.T., Plastino, A., Rosso, O.A., Randomizing nonlinear maps via symbolic dynamics (2008) Physica A, 387, pp. 3373-3383
  • Dinan, E.H., Jabbari, B., Spreading codes for direct sequence CDMA and wideband CDMA cellular networks (1998) IEEE Commun. Mag., 36, pp. 48-54. , doi:10.1109/35.714616
  • Ebeling, W., Steuer, R., Partition-based entropies of deterministic and stochastic maps (2001) Stoch. Dyn., 1, pp. 1-17. , doi:10.1142/S0219493701000047
  • Eckmann, J., Oliffson, K.S., Ruelle, D., Recurrence plots of dynamical systems (1987) Europhys. Lett., 4, pp. 973-977. , doi:10.1209/0295-5075/4/9/004
  • Feldman, D.P., McTague, C.S., Crutchfield, P., (2008) The Organization of Intrinsic Computation: Complexity-Entropy Diagrams and the Diversity of Natural Information Processing, , http://arxiv.org/abs/0806.4789
  • Fernández, J.G., Larrondo, H.A., Slavin, H.A., Levin, D.G., Hidalgo, R.M., Rivera, R.R., Masking properties of APD communication systems (2003) Physica A, 328, pp. 351-359. , doi:10.1016/S0378-4371(03)00580-6
  • Gonzalez, C.M., Larrondo, H.A., Rosso, O.A., Statistical complexity measure of pseudorandom bit generators (2005) Physica A: Statistical Mechanics and its Applications, 354 (1-4), pp. 281-300. , DOI 10.1016/j.physa.2005.02.054, PII S0378437105001779
  • Hidalgo, R.M., Fernandez, J.G., Rivera, R.R., Larrondo, H.A., Versatile DSP-based chaotic communication system (2001) Electronics Letters, 37 (19), pp. 1204-1205. , DOI 10.1049/el:20010784
  • Keller, K., Lauffer, H., Symbolic analysis of high-dimensional time series (2003) Int. J. Bifurcat. Chaos, 13, pp. 2657-2668. , doi:10.1142/S0218127403008168)
  • Keller, K., Sinn, M., Ordinal analysis of time series (2005) Physica A: Statistical Mechanics and its Applications, 356 (1), pp. 114-120. , DOI 10.1016/j.physa.2005.05.022, PII S0378437105004644, Nonequilibrium Statistical Mechanics and Nonlinear Physics (MEDYFINOL'04)
  • Kocarev, L., Jakimoski, G., Pseudorandom bits generated by chaotic maps (2003) IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 50, pp. 123-126. , doi:10.1109/TCSI.2002.804550
  • Kocarev, L., Parlitz, U., General approach for chaotic synchronization with applications to communication (1995) Phys. Rev. Lett., 74, pp. 5028-5031. , doi:10.1103/PhysRevLett.74.5028
  • Kowalski, A.M., Martin, M.T., Plastino, A., Rosso, O.A., Bandt-Pompe approach to the classical-quantum transition (2007) Physica D: Nonlinear Phenomena, 233 (1), pp. 21-31. , DOI 10.1016/j.physd.2007.06.015, PII S0167278907001790
  • Lamberti, P.W., Martín, M.T., Plastino, A., Rosso, O.A., Intensive entropic non-triviality measure (2004) Physica A, 334, pp. 119-131. , doi:10.1016/j.physa.2003.11.005
  • Larrondo, H.A., Gonzalez, C.M., Martin, M.T., Plastino, A., Rosso, O.A., Intensive statistical complexity measure of pseudorandom number generators (2005) Physica A: Statistical Mechanics and its Applications, 356 (1), pp. 133-138. , DOI 10.1016/j.physa.2005.05.025, PII S037843710500467X, Nonequilibrium Statistical Mechanics and Nonlinear Physics (MEDYFINOL'04)
  • Larrondo, H.A., Martin, M.T., González, C.M., Plastino, A., Rosso, O.A., Random number generators and causality (2006) Phys. Lett. A, 352, pp. 421-425. , doi:10.1016/j.physleta.2005.12.009
  • Lasota, A., Mackey, M.C., (1994) Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd Ed., , New York, NY: Springer
  • L'Ecuyer, P., Uniform random number generation (1994) Ann. Oper. Res., 53, pp. 77-120. , doi:10.1007/BF02136827
  • López-Ruiz, R., Mancini, H.L., Calbet, X., A statistical measure of complexity (1995) Phys. Lett. A, 209, pp. 321-326. , doi:10.1016/0375-9601(95)00867-5
  • Martin, M.T., Plastino, A., Rosso, O.A., Statistical complexity and disequilibrium (2003) Phys. Lett. A, 311, pp. 126-132. , doi:10.1016/S0375-9601(03)00491-2
  • Martin, M.T., (2004) Wavelet Transforms and Information Theory of Complex Signals Analysis, , PhD thesis, Department of Mathematics, Faculty of Sciences, University of La Plata
  • Marwan, N., Romano, M.C., Thiel, M., Kurths, J., Recurrence plots for the analysis of complex systems (2007) Phys. Rep., 438, pp. 237-329. , doi:10.1016/j.physrep.2006.11.001
  • Mazzini, G., Setti, G., Rovatti, R., Chaotic complex spreading sequences for asynchronous DS-CDMA. Part 1: System modeling and results (1997) IEEE Trans. Circuits Syst. I, 44, pp. 937-947
  • Mischaikow, K., Mrozek, M., Reiss, J., Szymczak, A., Construction of symbolic dynamics from experimental time series (1999) Phys. Rev. Lett., 82, p. 1144. , doi:10.1103/PhysRevLett.82.1144
  • Pecora, M., Carroll, L., Thomas, L., Synchronization in chaotic systems (1990) Phys. Rev. Lett., 64, pp. 821-824. , doi:10.1103/PhysRevLett.64.821
  • Petrocelli, R.A., De Micco, L., Carrica, D.O., Larrondo, H.A., Acquisition of low frequency signals immersed in noise by chaotic sampling and fir filters (2007) Proc. WISP2007, Alcalá de Henares, Spain, pp. 351-356
  • Powell, G.E., Percival, I.C., A spectral entropy method for distinguishing regular and irregular motion of hamiltonian systems (1979) J. Phys. A Math. Gen., 12, pp. 2053-2071. , doi:10.1088/0305-4470/12/11/017
  • Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schurmann, M., Ba ar, E., Wavelet entropy: A new tool for analysis of short duration brain electrical signals (2001) Journal of Neuroscience Methods, 105 (1), pp. 65-75. , DOI 10.1016/S0165-0270(00)00356-3, PII S0165027000003563
  • Rosso, O.A., Larrondo, H.A., Martin, M.T., Plastino, A., Fuentes, M.A., Distinguishing noise from chaos (2007) Physical Review Letters, 99 (15), p. 154102. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.99.154102&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.99.154102
  • Rosso, O.A., Zunino, L., Perez, D.G., Figliola, A., Larrondo, H.A., Garavaglia, M., Martin, M.T., Plastino, A., Extracting features of Gaussian self-similar stochastic processes via the Bandt-Pompe approach (2007) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 76 (6), p. 061114. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.76.061114&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.76.061114
  • Rosso, O.A., Vicente, R., Mirasso, C.R., Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: An information theory approach (2008) Phys. Lett. A, 372, pp. 1018-1023. , doi:10.1016/j.physleta.2007.08.063
  • Rovatti, R., Mazzini, G., Setti, G., On the ultimate limits of chaos-based asynchronous DS-CDMA-i: Basic definitions and results (2004) IEEE Trans. Circuits Syst. I, 51, pp. 1336-1347. , doi:10.1109/TCSI.2004.830700
  • Rovatti, R., Mazzini, G., Setti, G., On the ultimate limits of chaos-based asynchronous DS-CDMA-ii: Analytical results and asymptotics (2004) IEEE Trans. Ciruits Syst. I, 51, pp. 1348-1364. , doi:10.1109/TCSI.2004.830698
  • Setti, G., Balestra, M., Rovatti, R., Experimental verification of enhanced electromagnetic compatibility in chaotic FM clock signals (2000) Proc. ISCAS'00, 3, pp. 229-232
  • Setti, G., Mazzini, G., Rovatti, R., Callegari, S., Statistical modeling of discrete-time chaotic processes - Basic finite-dimensional tools and applications (2002) Proceedings of the IEEE, 90 (5), pp. 662-690. , DOI 10.1109/JPROC.2002.1015001, PII S0018921902052507
  • Shan, X., Xia, Y., Ren, Y., Yuan, J., Spatiotemporal chaotic spreading sequences for CDMA communications (2006) Commun. Tech. Proc., 1, pp. 530-535
  • Stojanovski, T., Kocarev, L., Chaos-based random number generators: I. Analysis (2001) IEEE Trans. Circuits Syst. I, 48, pp. 281-288
  • Wackerbauer, R., Witt, A., Atmanspacher, H., Kurths, J., Scheingraber, H., A comparative classification of complexity measures (1994) Chaos Soliton. Fract., 4, pp. 133-173. , doi:10.1016/0960-0779(94)
  • Zunino, L., Perez, D.G., Martin, M.T., Plastino, A., Garavaglia, M., Rosso, O.A., Characterization of Gaussian self-similar stochastic processes using wavelet-based informational tools (2007) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 75 (2), p. 021115. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevE.75.021115&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevE.75.021115
  • Zunino, L., Pérez, D.G., Martín, M.T., Garavaglia, M., Plastino, A., Rosso, O.A., Permutation entropy of fractional Brownian motion and fractional gaussian noise (2008) Phys. Lett. A, 372, pp. 4768-4774. , doi:10.1016/j.physleta.2008.05.026

Citas:

---------- APA ----------
De Micco, L., Larrondo, H.A., Plastino, A. & Rosso, O.A. (2009) . Quantifiers for randomness of chaotic pseudo-random number generators. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1901), 3281-3296.
http://dx.doi.org/10.1098/rsta.2009.0075
---------- CHICAGO ----------
De Micco, L., Larrondo, H.A., Plastino, A., Rosso, O.A. "Quantifiers for randomness of chaotic pseudo-random number generators" . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1901 (2009) : 3281-3296.
http://dx.doi.org/10.1098/rsta.2009.0075
---------- MLA ----------
De Micco, L., Larrondo, H.A., Plastino, A., Rosso, O.A. "Quantifiers for randomness of chaotic pseudo-random number generators" . Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 367, no. 1901, 2009, pp. 3281-3296.
http://dx.doi.org/10.1098/rsta.2009.0075
---------- VANCOUVER ----------
De Micco, L., Larrondo, H.A., Plastino, A., Rosso, O.A. Quantifiers for randomness of chaotic pseudo-random number generators. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009;367(1901):3281-3296.
http://dx.doi.org/10.1098/rsta.2009.0075