Artículo

Pimentel, L.C.G.; Pérez Guerrero, J.S.; Ulke, A.G.; Duda, F.P.; Heilbron Filho, P.F.L. "Assessment of the unified analytical solution of the steady-state atmospheric diffusion equation for stable conditions" (2014) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 470(2167)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, the performance of a unified formal analytical solution for the simulation of atmospheric diffusion problems under stable conditions is evaluated. The eigenquantities required by the formal analytical solution are obtained by solving numerically the associated eigenvalue problem based on a newly developed algorithm capable of being used in high orders and without missing eigenvalues. The performance of the formal analytical solution is evaluated by comparing the converged predicted results against the observed values in the stable runs of the Prairie Grass experiment as well as the simulated results available in the literature. It was found that the developed algorithm was efficient and that the convergence rate depends on the stability condition and the considered parametrizations for wind speed and turbulence. The comparisons among predicted and observed concentrations showed a good agreement and indicate that the considered dispersion formulations are appropriate to simulate dispersion under slightly to moderate atmospheric stable conditions. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

Registro:

Documento: Artículo
Título:Assessment of the unified analytical solution of the steady-state atmospheric diffusion equation for stable conditions
Autor:Pimentel, L.C.G.; Pérez Guerrero, J.S.; Ulke, A.G.; Duda, F.P.; Heilbron Filho, P.F.L.
Filiación:Computational Nucleus for Air Quality Studies (NCQAr), Department of Meteorology, Federal University of Rio de Janeiro, RJ-Rio de Janeiro 21941-916, Brazil
Department of Mechanical Engineering, COPPE, Federal University of Rio de Janeiro, RJ-Rio de Janeiro 21945-970, Brazil
Brazilian Nuclear Energy Commission R. General Severiano 90, RJ-Rio de Janeiro 22290-901, Brazil
Departamento de Cs. de la Atmósfera y Los Océanos, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Piso 2, Buenos Aires, Argentina
UMI IFAECI/CNRS, Buenos Aires, Argentina
Palabras clave:Integral transform; Pollutant dispersion; Stable boundary layer; Unified analytical solution; Atmospheric movements; Diffusion; Integral equations; Atmospheric diffusion; Atmospheric diffusion equations; Convergence rates; Eigenvalue problem; Integral transform; Pollutant dispersions; Stability condition; Stable boundary layer; Eigenvalues and eigenfunctions
Año:2014
Volumen:470
Número:2167
DOI: http://dx.doi.org/10.1098/rspa.2014.0021
Título revista:Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Título revista abreviado:Proc. R. Soc. A Math. Phys. Eng. Sci.
ISSN:13645021
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13645021_v470_n2167_p_Pimentel

Referencias:

  • Russell, A., Dennis, R., NARSTO critical review of photochemical models and modeling (2000) Atmos. Environ, 34, pp. 2283-2324. , doi:10.1016/S1352-2310(99)00468-9
  • Wortmann, S., Vilhena, M.T., Moreira, D.M., Buske, D., A new analytical approach to simulate the pollutant dispersion in the PBL (2005) Atmos. Environ, 39, pp. 2171-2178. , doi:10.1016/j.atmosenv.200501003
  • Kumar, P., Sharan, M., An analytical model for dispersion of pollutants from a continuous source in the atmospheric boundary layer (2010) Proc. R. Soc. A, 466, pp. 383-406. , doi:10.1098/rspa.20090394
  • Pérez Guerrero, J.S., Pimentel, L.C.G., Oliveira-Júnior, J.F., Heilbron Filho, P.F.L., Ulke, A.G., A unified analytical solution of the steady-state atmospheric diffusion equation (2012) Atmos. Environ, 55, pp. 201-2012. , doi:10.1016/j.atmosenv.2012.03.015
  • Moreira, D.M., Moraes, A.C., Goulart, A.G., De Almeida Albuquerque, T.T., A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance (2013) Atmos. Environ, 83, pp. 254-259. , doi:10.1016/j.atmosenv.2013.10.045
  • Moreira, D.M., Carvalho, J.C., Goulart, A.G., Tirabassi, T., Simulation of the dispersion of pollutants using two approaches for the case of a low source in a SBL: Evaluation of turbulence parameterisations (2005) Water Air Soil Pollut, 161, pp. 285-297. , doi:10.1007/s11270-005-4287-6
  • Kumar, P., Sharan, M., Parameterization of the eddy diffusivity in a dispersion model over homogeneous terrain in the atmospheric boundary layer (2012) Atmos. Res, 106, pp. 30-43. , doi:10.1016/j.atmosres.2011.10.020
  • Salmond, J.A., McKendry, I.G., A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality (2005) Prog. Phys. Geogr, 29, pp. 171-188. , doi:10.1191/0309133305pp442ra)
  • Stull, R.B., (1988) An Introduction to Boundary Layer Meteorology, , Dordrecht, The Netherlands: Kluwer Academic Publishers
  • Lallas, D.P., Ratto, C.F., (1996) Modelling of Atmospheric Flow Field, , Singapore: World Scientific Publishing Co Pte Ltd
  • Mahrt, L., Heald, R.C., Lenschow, D.H., Stankov, B.B., Troen, I., An observational study of the structure of the nocturnal boundary layer (1979) Bound. Layer Meteorol, 17, pp. 247-264. , doi:10.1007/BF00117983
  • Nieuwstadt, F.T.M., The turbulence structure of the stable, nocturnal boundary layer (1984) J. Atmos. Sci, 41, pp. 2202-2216. , doi:10.1175/1520-0469(1984)041<2202: TTSOTS>2.0.CO;2
  • Nieuwstadt, F.T.M., Some aspects of the turbulent stable boundary layer (1984) Bound. Layer Meteorol, 30, pp. 31-55. , doi:10.1007/BF00121948
  • Holtslag, A.A.M., Nieuwstadt, F.T.M., Scaling the atmospheric boundary layer (1986) Bound. Layer Meteorol, 36, pp. 201-209. , doi:10.1007/BF00117468
  • Mangia, C., Moreira, D.M., Schipa, I., Degrazia, G.A., Tirabassi, T., Rizza, U., Evaluation of a new eddy diffusivity parameterization from turbulent eulerian spectra in different stability conditions (2002) Atmos. Environ, 36, pp. 67-76. , doi:10.1016/S1352-2310(01)00469-1
  • Mikhailov, M.D., Cotta, R.M., Integral transform solution of eigenvalue problems (1994) Commun. Numer. Methods Eng, 10, pp. 827-835. , doi:10.1002/cnm.1640101009
  • Barad, M.L., Project Prairie Grass: A field program in diffusion (1958) Geophys. Res. Paper No. 59 (II) TR-58-235, , Cambridge, MA: Air Force Research Center
  • Mikhailov, M.D., Ozisik, M.N., (1984) Unified Analysis and Solutions of Heat and Mass Diffusion, , New York, NY: John Wiley and Sons
  • Ozisik, M.N., (1980) Heat Conduction, , New York, NY: JohnWiley and Sons
  • Cotta, R.M., (1993) Integral Transforms in Computational Heat and Fluid Flow, , Boca Raton, FL: CRC Press
  • Duffy, D.G., (2001) Green's Functions with Applications, , Boca Raton, FL: Chapman and Hall/CRC
  • Mikhailov, M.D., Vulchanov, N.L., Computational procedure for Sturm-Liouville problems (1983) J. Comput. Phys, 50, pp. 323-336. , doi:10.1016/0021-9991(83)90101-8
  • Bailey, P.B., Gordon, M.K., Shampine, L.F., Automatic solution of the Strum-Liouville problem (1978) ACM Trans. Math. Software (TOMS), 4, pp. 193-208. , doi:10.1145/355791.355792
  • Marletta, M., Pryce, J.D., Automatic solution of Strum-Liouville prolems using the Pruess method (1992) J. Comput. Appl. Math, 39, pp. 57-78. , doi:10.1016/0377-0427(92)90222-J)
  • Ledoux, V., Van Daele, M., Vanden Berghe, G., Efficient computation of high index Sturm-Liouville eigenvalues for problems in physics (2009) Comp. Phys. Commun, 180, pp. 241-250. , doi:10.1016/j.cpc.2008.10.001
  • Pérez Guerrero, J.S., Pimentel, L.C.G., Skaggs, T.H., Analytical solution for the advection- dispersion transport equation in layered media (2013) Int. J. Heat Mass Transf, 56, pp. 274-282. , doi:10.1016/j.ijheatmasstransfer.2012.09.011
  • (2009) Mathematica, , http://www.wolfram.com, v. 7.0. Champaign, IL: Wolfram Research Inc. See
  • Ulke, A.G., New turbulent parameterization for a dispersion model in the atmospheric boundary layer (2000) Atmos. Environ, 34, pp. 1029-1042. , doi:10.1016/S1352-2310(99)00378-7
  • Gryning, S.E., Batchvarova, E., Brümmer, B., Jørgensen, H., Larsen, S., On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer (2007) Bound. Layer Meteorol, 124, pp. 251-268. , doi:10.1007/s10546-007-9166-9
  • Degrazia, G.A., Moraes, O.L.L., A model for eddy diffusivity in a stable boundary layer (1992) Bound. Layer Meteorol, 58, pp. 205-214. , doi:10.1007/BF02033824
  • Hanna, S.R., Strimaitis, D.G., Chang, J.C., Hazard response modeling uncertainty (a quantitative method) (1991) User's Guide for Software for Evaluation of Hazardous Gas Dispersion Models Westford, , Cincinnati, OH: Sigma Research Corp
  • Pérez Guerrero, J.S., Pimentel, L.C.G., Skaggs, T.H., Van Genuchten, M.T., Analystical soltion of advection-diffusion transport equation using change-of-variable and integral transofrm (2009) Int. J. Heat Mass Transf, 52, pp. 3297-3304. , doi:10.1016/j.ijheatmasstransfer.2009.02.002
  • Olesen, H.R., Berkowicz, R., Løfstrøm, P., OML: Review of model formulation (2007) NERI Technical Report No. 609, , http://www.dmu.dk/Pub/FR609, Aarhus, Denmark: National Environemntal Research Institute
  • Hanna, S.R., Briggs, G.A., Hosker Jr., R.P., (1982) Handbook on Atmospheric Diffusion, , US Department of Energy report COE/TIC-11223.Washington, DC: US Department of Energy
  • Degrazia, G.A., Anfossi, D., Carvalho, J.C., Mangia, C., Tirabassi, T., Campos Velho, H.F., Turbulence parameterization for PBL dispersion models in all stability conditions (2000) Atmos. Environ, 34, pp. 3575-3583. , doi:10.1016/S1352-2310(00)00116-3
  • Van Ulden, A.P., Simple estimates for vertical dispersion from sources near the ground (1978) Atmos. Environ, 12, pp. 2125-2129. , doi:10.1016/0004-6981(78)90167-1
  • Zilitinkevich, S.S., On the determination of the height of the Ekman boundary layer (1972) Bound. Layer Meteorol, 3, pp. 141-145. , doi:10.1007/BF02033914

Citas:

---------- APA ----------
Pimentel, L.C.G., Pérez Guerrero, J.S., Ulke, A.G., Duda, F.P. & Heilbron Filho, P.F.L. (2014) . Assessment of the unified analytical solution of the steady-state atmospheric diffusion equation for stable conditions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2167).
http://dx.doi.org/10.1098/rspa.2014.0021
---------- CHICAGO ----------
Pimentel, L.C.G., Pérez Guerrero, J.S., Ulke, A.G., Duda, F.P., Heilbron Filho, P.F.L. "Assessment of the unified analytical solution of the steady-state atmospheric diffusion equation for stable conditions" . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2167 (2014).
http://dx.doi.org/10.1098/rspa.2014.0021
---------- MLA ----------
Pimentel, L.C.G., Pérez Guerrero, J.S., Ulke, A.G., Duda, F.P., Heilbron Filho, P.F.L. "Assessment of the unified analytical solution of the steady-state atmospheric diffusion equation for stable conditions" . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 470, no. 2167, 2014.
http://dx.doi.org/10.1098/rspa.2014.0021
---------- VANCOUVER ----------
Pimentel, L.C.G., Pérez Guerrero, J.S., Ulke, A.G., Duda, F.P., Heilbron Filho, P.F.L. Assessment of the unified analytical solution of the steady-state atmospheric diffusion equation for stable conditions. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014;470(2167).
http://dx.doi.org/10.1098/rspa.2014.0021