Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An excellent methodology for the synthesis of nanocomposite materials using a biodegradable polymer as matrix (polylactic acid, PLA) and functionalized by Fenton reaction carbon nanotubes (fMWCNTs) as reinforcement was developed. PLA was modified with benzoyl chloride and both modified materials were bounded covalently by esterification reaction. Infrared spectroscopy (FTIR) and thermogravimetry (TGA) studies were performed to verify the synthesis of the composites obtained. Films based on modified PLA reinforced with fMWCNTs (PLAmfMWCNTs) were conformed observing excellent dispersion of the filler in the PLA matrix. Finally it was shown that the addition of fMWCNTs improves Young's modulus and strength without losing deformation. Also it was observed that the good stability of the film let us to process it until 300 °C. Taking into account all these results, the new biodegradable nanocomposite material developed could be very promising to be used in packaging and biomedical industries as a replacement of the synthetic materials. © 2012 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Covalent grafting of carbon nanotubes to PLA in order to improve compatibility
Autor:Seligra, P.G.; Nuevo, F.; Lamanna, M.; Famá, L.
Filiación:Dep. de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Argentina
Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR-CONICET), Dpto. de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad de Buenos Aires (1428), Ciudad Autónoma de Buenos Aires, Argentina
Grupo de Materiales Avanzados, INTECIN (UBA-CONICET), Universidad de Buenos Aires, Paseo Colón 850, Argentina
Palabras clave:A. Polymer-matrix composites (PMCs); B. Physical properties; D. Mechanical testing; E. Casting; Biodegradable polymers; Carbon; Carbon nanotubes; Composite materials; Dispersions; Elastic moduli; Esterification; Fourier transform infrared spectroscopy; Infrared spectroscopy; Mechanical testing; Nanocomposites; Nanotubes; Oxidation; Packaging materials; Reinforcement; Thermogravimetric analysis; Yarn; Biodegradable nanocomposites; Biomedical industry; Covalent grafting; E. Casting; Esterification reactions; Modified materials; Polymer Matrix Composites (PMCs); Synthetic materials; Polymer matrix composites
Año:2013
Volumen:46
Página de inicio:61
Página de fin:68
DOI: http://dx.doi.org/10.1016/j.compositesb.2012.10.013
Título revista:Composites Part B: Engineering
Título revista abreviado:Compos Part B: Eng
ISSN:13598368
CODEN:CPBEF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13598368_v46_n_p61_Seligra

Referencias:

  • Harrison, B.S., Atala, A., Oxygen producing biomaterials for tissue regeneration (2007) Biomaterials, 28, pp. 344-345
  • Tsai, Y.-C., Chen, S.-Y., Liaw, H.-W., Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors (2007) Sens Actuat B, 125, pp. 474-478
  • Wu, C.-S., Liao, H.-T., Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites (2007) Polymer, 48, pp. 4449-4445
  • Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S., Quanxing polymer-supported nanocomposites for environmental application: A review (2011) J Chem Eng, (170), pp. 381-389
  • Sorrentino, A., Gorrasi, G., Vittoria, V., Potential perspectives of bionanocomposites for food packaging applications (2007) Trends Food Sci Technol, 18, pp. 84-89
  • Supronowicz, P.R., Ajayan, P.M., Ulmann, K., Arulanandam, B.P., Metzger, D.W., Bizios, R., Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation (2002) J Biomed Mater Res, 59 (3), pp. 499-495
  • Kim, H.-W., Lee, H.-H., Knowles, J.C., Electrospinning biomedical nanocomposite fibers of hydroxyapatite/ poly(lactic acid) for bone regeneration (2006) J Biomed Mater Res Part A, 79, pp. 643-649
  • Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G.R.K., Lee, H.-Y., A review of dna functionalized/grafted carbon nanotubes and their characterization (2007) Sens Actuat B, 122, pp. 672-678
  • Timur, S., Anik, U., Odaci, D., Gorton, L., Development of a microbial biosensor based on carbon nanotube (cnt) modified electrodes (2007) Electrochem Commun, 9, pp. 1810-1815
  • Matayabas, J.C., Turner, S.R., (2000) Nanocomposite Technology for Enhancing the Gas Barrier of Polyethylene Terephthalate, pp. 207-202. , In:Pinnavaia TJ. Beall GW editors. England
  • Sung, Y.T., Kum, C.K., Lee, H.S., Byon, N.S., Yoon, H.G., Kim, W.N., Dynamic mechanical and morphological properties of polycarbonate/multi- walled carbon nanotube composites (2005) Polymer, 46, pp. 5656-5656
  • De Azeredo, H.M.C., Nanocomposites for food packaging applications (2009) Food Res Int, 42, pp. 1240-1245
  • Vaia, R.A., Wagner, H.D., Framework for nanocomposites (2004) Mater Today, 7 (11), pp. 32-37
  • Zilli, D., Chiliotte, C., Escobar, M.M., Bekeris, V., Rubiolo, G.R., Cukierman, A.L., Magnetic properties of multi-walled carbon nanotube-epoxy composites (2005) Polymer, 46, pp. 6090-6095
  • Veedu, A., Cao, X., Li, K.M., Soldano, C., Kar, S., Ajayan, P.M., Multifunctional composites using reinforced laminae with carbon nanotube forests (2006) Nature Mater, 5, pp. 457-456
  • Liu, P., Modifications of carbon nanotubes with polymers (2005) Eur Polym J, 41 (11), pp. 2693-2697
  • Song, W., Zheng, Z., Tang, W., Wang, X., A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer (2007) Polymer, 48, pp. 3658-3656
  • Ajayan, P.M., Zhou, O.Z., Applications of carbon nanotubes (2001) Appl Phys, 80, pp. 391-394
  • Suhr, J., Zhang, W., Ajayan, P., Koratkar, N., Temperature activated interfacial friction damping in carbon nanotube polymer composites (2006) Nano Lett, 6, pp. 219-212
  • Valdés, M.G., González, A.C.V., Calzón, J.A.G., Díaz-García, M.E., Analytical nanotechnology for food analysis (2009) Microchim Acta, 166, pp. 1-19
  • (2010), http://www.plastemart.com, Plastemart com; De Falco, A., Marzocca, A.J., Corcuera, M.A., Ecesiza, A., Mondragon, I., Rubiolo, G.H., Accelerator adsorption onto carbon nanotubes surface affects the vulcanization process of styrene-butadiene rubber composites (2009) J Appl Polym Sci, 113, pp. 2851-2857
  • (2002), ASTM D882-02. Standard Test Method For Tensile Properties Of Thin Plastic Sheeting; Escobar, M., Goyanes, S., Corcuera, M.A., Eceiza, A., Mondragon, I., Rubiolo, G., Purification and functionalization of carbón nanotube by classical and advanced oxidation processes (2009) J Nanosci Nanotechnol, 9, pp. 6228-6223
  • Hsieh, Y.-C., Chou, Y.-C., Lin, C.-P., Hsieh, T.-F., Shu, C.-M., Thermal analysis of multiwalled carbon nanotubes by kissinger's corrected kinetic equation (2010) AAQR, (10), pp. 212-218
  • De Falco, A., Fascio, M.L., Lamanna, M.E., Corcuerad, M.A., Mondragon, I., Rubiolo, G.H., Thermal treatment of the carbon nanotubes and their functionalization with styrene (2009) Physics Part B, 404, pp. 2780-2783
  • Yudianti, R., Indrarti, L., Onggo, H., Thermal behavior of purified carbon nanotube (2010) J Appl Sci, 10 (17), p. 82
  • Yoon, J.T., Influences of poly(lactic acid) grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid (2009) Polym Adv Technol, 20, pp. 631-638
  • Auras, R.A., Lim, L.-T., Selke, S.E.M., Tsuji, H., (2010) Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, , New York: John Wiley & Sons, Inc
  • Zhao, Y., Qiu, Z., Yang, W., Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(l-lactide (2009) Compos Sci Technol, 69, pp. 627-623
  • Meng, H., Sui, G.X., Fang, P.F., Yang, R., Effects of acid- and diamine-modified mwnts on the mechanical properties and crystallization behavior of polyamide 6 (2008) Polymer, 49 (2), pp. 610-612
  • Kim, J.Y., Han, S., Hong, S., Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites (2008) Polymer, 49, pp. 3335-3334
  • Zilli, D., Goyanes, S., Escobar, M.M., Chiliotte, C., Bekeris, V., Cukierman, A.L., Comparative analysis of electric, magnetic, and mechanical properties of epoxy matrix composites with different contents of multiple walled carbon nanotubes (2007) Polym Compos, 28, pp. 612-617
  • Tsuji, H., Kawashima, Y., Takikawa, H., Tanaka, S., Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation (2007) Polymer, 48, pp. 4213-4212
  • Chen, G.-X., Shimizu, H., Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(l-lactide) matrix (2008) Polymer, 49, pp. 943-945
  • Papageorgioua, G.Z., Achiliasa, D.S., Nanakia, S., Beslikasb, T., Bikiaris, D., Pla nanocomposites: Effect of filler type on non-isothermal crystallization (2010) Thermochim Acta, (511), pp. 129-123
  • Zhou, X., Shin, E., Wang, K.W., Bakis, C.E., Interfacial damping characteristics of carbon nanotube-based composites (2004) Compos Sci Technol, 64 (15), pp. 2425-2423
  • Famá, L., Pettarin, V., Bernal, C., Goyanes, S., Starch based nanocomposites with improved mechanical properties (2011) Carbohydr Polym, 83 (3), pp. 1226-1223
  • Famá, L., Gañan, P., Bernal, C., Goyanes, S., Biodegradable starch nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydr Polym, 87, pp. 1989-1993
  • Rao, Y.Q., Pochan, J.M., Mechanics of polymer-clay nanocomposites (2007) Macromolecules, 40, pp. 290-296
  • Ma, X., Jian, R., Chang, P.R., Yu, J., Fabrication and characterization of citric acidmodified starch nanoparticles/plasticized-starch composites (2008) Biomacromolecules, 9, pp. 3314-3312
  • Ma, X., Yu, J., Wang, N., Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers (2008) Compos Sci Technol, 68, pp. 268-267
  • Moon, S.I., Jin, F., Lee, C.J., Tsutsumi, S., Hyon, S.H., Novel carbon nanotube/poly(llactic acid) composites: Their modulus, thermal stability, and electrical conductivity (2005) Macromol Symp, 224, pp. 287-289
  • Chen, G.-X., Kim, H.-S., Park, B.H., Yoon, J.-S., Synthesis of poly(l-lactide)- functionalized multiwalled carbon nanotubes by ring-opening polymerization (2007) Macromol Chem Phys, 208, pp. 389-389

Citas:

---------- APA ----------
Seligra, P.G., Nuevo, F., Lamanna, M. & Famá, L. (2013) . Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Composites Part B: Engineering, 46, 61-68.
http://dx.doi.org/10.1016/j.compositesb.2012.10.013
---------- CHICAGO ----------
Seligra, P.G., Nuevo, F., Lamanna, M., Famá, L. "Covalent grafting of carbon nanotubes to PLA in order to improve compatibility" . Composites Part B: Engineering 46 (2013) : 61-68.
http://dx.doi.org/10.1016/j.compositesb.2012.10.013
---------- MLA ----------
Seligra, P.G., Nuevo, F., Lamanna, M., Famá, L. "Covalent grafting of carbon nanotubes to PLA in order to improve compatibility" . Composites Part B: Engineering, vol. 46, 2013, pp. 61-68.
http://dx.doi.org/10.1016/j.compositesb.2012.10.013
---------- VANCOUVER ----------
Seligra, P.G., Nuevo, F., Lamanna, M., Famá, L. Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Compos Part B: Eng. 2013;46:61-68.
http://dx.doi.org/10.1016/j.compositesb.2012.10.013