Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We report the recognition-driven assembly of self-limiting protein nanoparticles displaying enzymatic activity. Solution self-assembly of concanavalin A lectin and glycoenzyme glucose oxidase leads to the spontaneous formation of biocolloids with well-defined dimensions, narrow size distribution and remarkable stability. These biocolloids successfully recognize a glycosylated modified electrode retaining the enzyme activity. © The Royal Society of Chemistry 2015.

Registro:

Documento: Artículo
Título:Recognition-driven assembly of self-limiting supramolecular protein nanoparticles displaying enzymatic activity
Autor:Piccinini, E.; Pallarola, D.; Battaglini, F.; Azzaroni, O.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata-CONICET, Suc. 4 CC 16, La Plata, 1900, Argentina
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Palabras clave:concanavalin A; glucose oxidase; lectin; mannose; nanoparticle; protein; enzyme; protein; Article; chemical modification; controlled study; electrode; enzyme active site; enzyme activity; hydrodynamics; protein aggregation; protein assembly; protein interaction; static electricity; stoichiometry; Enzymes; Nanoparticles; Proteins
Año:2015
Volumen:51
Número:79
Página de inicio:14754
Página de fin:14757
DOI: http://dx.doi.org/10.1039/c5cc05837f
Título revista:Chemical Communications
Título revista abreviado:Chem. Commun.
ISSN:13597345
CODEN:CHCOF
CAS:concanavalin A, 11028-71-0; glucose oxidase, 9001-37-0; mannose, 31103-86-3, 3458-28-4; protein, 67254-75-5; Enzymes; Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13597345_v51_n79_p14754_Piccinini

Referencias:

  • Baranov, D., Manna, L., Kanaras, A.G., (2011) J. Mater. Chem., 21, p. 16694
  • Kotov, N.A., (2011) J. Mater. Chem., 21, p. 16673
  • Jia, G., Sitt, A., Hitin, G.B., Hadar, I., Bekenstein, Y., Amit, Y., Popov, I., Banin, U., (2014) Nat. Mater., 13, pp. 302-308
  • Ofir, Y., Samanta, B., Rotello, V.M., (2008) Chem. Soc. Rev., 37, p. 1814
  • Wang, L., Zhu, Y., Xu, L., Chen, W., Kuang, H., Liu, L., Agarwal, A., Kotov, N.A., (2010) Angew. Chem. Int. Ed., 49, p. 5472
  • Xia, Y., Tang, Z., (2012) Chem. Commun., 48, p. 6320
  • Cortez, M.L., Marmisolle, W., Pallarola, D., Pietrasanta, L.I., Murgida, D.H., Ceolin, M., Azzaroni, O., Battaglini, F., (2014) Chem.-Eur. J., 20, p. 13366
  • Fu, Q., Sheng, Y., Tang, H., Zhu, Z., Ruan, M., Xu, W., Zhu, Y., Tang, Z., (2015) ACS Nano, 9, p. 172
  • Evans, D.J., (2008) J. Mater. Chem., 18, p. 3746
  • Li, F., Josephson, D.P., Stein, A., (2011) Angew. Chem. Int. Ed., 50, p. 360
  • Amdursky, N., Molotskii, M., Gazit, E., Rosenman, G., (2010) J. Am. Chem. Soc., 132, p. 15632
  • Jutz, G., Boeker, A., (2011) Polymer, 52, p. 211
  • Ariga, K., Ji, Q., Mori, T., Naito, M., Yamauchi, Y., Abe, H., Hill, J.P., (2013) Chem. Soc. Rev., 42, p. 6322
  • Kiessling, L.L., Gestwicki, J.E., Strong, L.E., (2000) Curr. Opin. Chem. Biol., 4, p. 696
  • Jimenez Blanco, J.L., Ortiz Mellet, C., Garcia Fernandez, J.M., (2013) Chem. Soc. Rev., 42, p. 4518
  • Edelman, G.M., Cunningham, B.A., Reeke, G.N., Becker, J.W., Waxdal, M.J., Wang, J.L., (1972) Proc. Natl. Acad. Sci. U. S. A., 69, p. 2580
  • Leskovac, V., Trivic, S., Wohlfahrt, G., Kandrac, J., Pericin, D., (2005) Int. J. Biochem. Cell Biol., 37, p. 731
  • Xia, Y.S., Nguyen, T.D., Yang, M., Lee, B., Santos, A., Podsiadlo, P., Tang, Z.Y., Kotov, N.A., (2011) Nat. Nanotechnol., 6, p. 580
  • Il Park, J., Nguyen, T.D., Silveira, G.D.Q., Bahng, J.H., Srivastava, S., Zhao, G., Sun, K., Kotov, N.A., (2014) Nat. Commun., 5, p. 3593
  • Entliche, G., Kostir, J.V., Kocourek, J., (1971) Biochim. Biophys. Acta, 236, p. 795
  • Pazur, J.H., Kleppe, K., (1964) Biochemistry, 3, p. 578
  • Lvov, Y., Ariga, K., Ichinose, I., Kunitake, T., (1995) J. Am. Chem. Soc., 117, p. 6117
  • Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J., (2004) Proc. Natl. Acad. Sci. U. S. A., 101, p. 15556
  • Lavelle, L., Gingery, M., Phillips, M., Gelbart, W.M., Knobler, C.M., Cadena-Nava, R.D., Vega-Acosta, J.R., Ruiz-Garcia, J., (2009) J. Phys. Chem. B, 113, p. 3813
  • Mannige, R.V., Brooks, C.L., III, (2009) Proc. Natl. Acad. Sci. U. S. A., 106, p. 8531
  • Sweeney, B., Zhang, T., Schwartz, R., (2008) Biophys. J., 94, p. 772
  • Serriere, J., Fenel, D., Schoehn, G., Gouet, P., Guillon, C., (2013) PLoS One, 8, p. e56424
  • Minton, A.P., (2006) J. Cell Sci., 119, p. 2863
  • Ariga, K., Li, M., Richards, G.J., Hill, J.P., (2011) J. Nanosci. Nanotechnol., 11, p. 1
  • Ariga, K., Ji, Q., Hill, J.P., Bando, Y., Aono, M., (2012) NPG Asia Mater., 4, p. e17
  • Ariga, K., Mori, T., Hill, J.P., (2013) Langmuir, 29, p. 8459
  • Pallarola, D., Queralto, N., Knoll, W., Ceolin, M., Azzaroni, O., Battaglini, F., (2010) Langmuir, 26, p. 13684
  • Pallarola, D., Von Bildering, C., Pietrasanta, L.I., Queralto, N., Knoll, W., Battaglini, F., Azzaroni, O., (2012) Phys. Chem. Chem. Phys., 14, p. 11027
  • Yang, H., Yuan, B., Zhang, X., Scherman, O.A., (2014) Acc. Chem. Res., 47, p. 2106
  • Katz, E., Willner, I., (2004) Angew. Chem. Int. Ed., 43, p. 6042
  • Ariga, K., Nakanishi, T., Michinobu, T., (2006) J. Nanosci. Nanotechnol., 6, p. 2278
  • Knoll, W., (1998) Annu. Rev. Phys. Chem., 49, p. 569
  • Anzai, J., Kobayashi, Y., (2000) Langmuir, 16, p. 2851
  • Pallarola, D., Queralto, N., Knoll, W., Azzaroni, O., Battaglini, F., (2010) Chem.-Eur. J., 16, p. 13970
  • Pallarola, D., Queralto, N., Battaglini, F., Azzaroni, O., (2010) Phys. Chem. Chem. Phys., 12, p. 8071
  • Mann, D.A., Kanai, M., Maly, D.J., Kiessling, L.L., (1998) J. Am. Chem. Soc., 120, p. 10575
  • Kiessling, L.L., Gestwicki, J.E., Strong, L.E., (2006) Angew. Chem. Int. Ed., 45, p. 2348
  • Jiang, H., English, B.P., Hazan, R.B., Wu, P., Ovryn, B., (2015) Angew. Chem. Int. Ed., 54, p. 1765
  • Yang, L., Nyalwidhe, J.O., Guo, S., Drake, R.R., Semmes, O.J., (2011) Mol. Cell. Proteomics, 10, p. M110007294

Citas:

---------- APA ----------
Piccinini, E., Pallarola, D., Battaglini, F. & Azzaroni, O. (2015) . Recognition-driven assembly of self-limiting supramolecular protein nanoparticles displaying enzymatic activity. Chemical Communications, 51(79), 14754-14757.
http://dx.doi.org/10.1039/c5cc05837f
---------- CHICAGO ----------
Piccinini, E., Pallarola, D., Battaglini, F., Azzaroni, O. "Recognition-driven assembly of self-limiting supramolecular protein nanoparticles displaying enzymatic activity" . Chemical Communications 51, no. 79 (2015) : 14754-14757.
http://dx.doi.org/10.1039/c5cc05837f
---------- MLA ----------
Piccinini, E., Pallarola, D., Battaglini, F., Azzaroni, O. "Recognition-driven assembly of self-limiting supramolecular protein nanoparticles displaying enzymatic activity" . Chemical Communications, vol. 51, no. 79, 2015, pp. 14754-14757.
http://dx.doi.org/10.1039/c5cc05837f
---------- VANCOUVER ----------
Piccinini, E., Pallarola, D., Battaglini, F., Azzaroni, O. Recognition-driven assembly of self-limiting supramolecular protein nanoparticles displaying enzymatic activity. Chem. Commun. 2015;51(79):14754-14757.
http://dx.doi.org/10.1039/c5cc05837f