Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work suggests a novel strategy to coat the caps and body of Au-nanorods (Au-NRs) with end-grafted polymer layers of different compositions by taking advantage of the different curvature of these two regions. A molecular theory was used to theoretically investigate the effect of local curvature and molecular architecture (intramolecular connectivity of the monomers) on the adsorption of polymer mixtures on cylindrical (Au-NR body) and spherical (Au-NR caps) surfaces. The adsorption process was systematically studied as a function of the backbone length, number and position of branches, quality of the solvent and total number of monomers of the polymer molecules in the mixture. The balance between repulsive forces and polymer-surface and polymer-polymer attractions governs the amount and composition of the adsorbed layer. This balance is in turn modulated by the architecture of the polymers, the curvature of the surface and the competition between the different polymers in the mixture for the available area. As a result, the equilibrium composition of the polymer layer on spheres and cylinders of the same radius differs, and in turn departs from that of the bulk solution. Curvature plays a major role: the available volume at a given distance from the surface is larger for spherical surfaces than for cylindrical ones, therefore the surface density of the bulkier (more branched) polymer in the mixture is larger on the Au-NR caps than on the Au-NR body. These results suggest that the combination of curvature at the nanoscale and tailored molecular architecture can confer anisotropic nanoparticles with spatially enriched domains and, therefore, lead to nanoconstructs with directional chemical interactions. © 2016 The Royal Society of Chemistry.

Registro:

Documento: Artículo
Título:Anisotropic surface functionalization of Au nanorods driven by molecular architecture and curvature effects
Autor:Solveyra, E.G.; Tagliazucchi, M.; Szleifer, I.
Filiación:Department of Biomedical Engineering, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States
INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Palabras clave:gold; nanotube; polymer; adsorption; anisotropy; surface property; Adsorption; Anisotropy; Gold; Nanotubes; Polymers; Surface Properties
Año:2016
Volumen:191
Página de inicio:351
Página de fin:372
DOI: http://dx.doi.org/10.1039/c6fd00020g
Título revista:Faraday Discussions
Título revista abreviado:Faraday Discuss.
ISSN:13596640
CAS:gold, 7440-57-5; Gold; Polymers
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13596640_v191_n_p351_Solveyra

Referencias:

  • Li, N., Zhao, P., Astruc, D., (2014) Angew. Chem., Int. Ed., 53, pp. 1756-1789
  • Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M., Mulvaney, P., (2005) Coord. Chem. Rev., 249, pp. 1870-1901
  • Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A., (2006) J. Am. Chem. Soc., 128, pp. 2115-2120
  • Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., El-Sayed, M.A., (2012) Chem. Soc. Rev., 41, pp. 2740-2779
  • Champion, J.A., Mitragotri, S., (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 4930-4934
  • Shi, X., Von Dem Bussche, A., Hurt, R.H., Kane, A.B., Gao, H., (2011) Nat. Nanotechnol., 6, pp. 714-719
  • Vácha, R., Martinez-Veracoechea, F.J., Frenkel, D., (2011) Nano Lett., 11, pp. 5391-5395
  • Lee, C., Lee, W.B., Kang, T., (2013) Appl. Phys. Lett., 103, p. 091602
  • Gonzalez Solveyra, E., Szleifer, I., (2016) Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 8 (3), pp. 334-354
  • Palui, G., Aldeek, F., Wang, W., Mattoussi, H., (2015) Chem. Soc. Rev., 44, pp. 193-227
  • Lu, H.B., Campbell, C.T., Castner, D.G., (2000) Langmuir, 16, pp. 1711-1718
  • Harder, P., Grunze, M., Dahint, R., Whitesides, G.M., Laibinis, P.E., (1998) J. Phys. Chem. B, 102, pp. 426-436
  • Lau, K.H.A., Sileika, T.S., Park, S.H., Sousa, A.M.L., Burch, P., Szleifer, I., Messersmith, P.B., (2015) Adv. Mater. Interfaces, 2, pp. 1400225-1400235
  • Lau, K.H.A., Ren, C., Park, S.H., Szleifer, I., Messersmith, P.B., (2012) Langmuir, 28, pp. 2288-2298
  • Ham, H.O., Park, S.H., Kurutz, J.W., Szleifer, I.G., Messersmith, P.B., (2013) J. Am. Chem. Soc., 135, pp. 13015-13022
  • Sapsford, K.E., Algar, W.R., Berti, L., Gemmill, K.B., Casey, B.J., Oh, E., Stewart, M.H., Medintz, I.L., (2013) Chem. Rev., 113, pp. 1904-2074
  • Caswell, K.K., Wilson, J.N., Bunz, U.H.F., Murphy, C.J., (2003) J. Am. Chem. Soc., 125, pp. 13914-13915
  • Murphy, C.J., Thompson, L.B., Alkilany, A.M., Sisco, P.N., Boulos, S.P., Sivapalan, S.T., Yang, J.A., Huang, J., (2010) J. Phys. Chem. Lett., 1, pp. 2867-2875
  • Nie, Z., Fava, D., Kumacheva, E., Zou, S., Walker, G.C., Rubinstein, M., (2007) Nat. Mater., 6, pp. 609-614
  • Nie, Z., Fava, D., Rubinstein, M., Kumacheva, E., (2008) J. Am. Chem. Soc., 130, pp. 3683-3689
  • Fava, D., Winnik, M.A., Kumacheva, E., (2009) Chem. Commun., pp. 2571-2573
  • Mühlig, S., Cunningham, A., Dintinger, J., Scharf, T., Bürgi, T., Lederer, F., Rockstuhl, C., (2013) Nanophotonics, 2, pp. 211-240
  • Lukach, A., Liu, K., Therien-Aubin, H., Kumacheva, E., (2012) J. Am. Chem. Soc., 134, pp. 18853-18859
  • Szleifer, I., Carignano, M.A., (1996) Adv. Chem. Phys., 94, pp. 165-260
  • Walkey, C.D., Olsen, J.B., Guo, H., Emili, A., Chan, W.C.W., (2012) J. Am. Chem. Soc., 134, pp. 2139-2147
  • Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A., (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 14265-14270
  • Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W.H., Cohen, Y., Chan, W.C.W., (2014) ACS Nano, 8, pp. 2439-2455
  • Szleifer, I., (1996) Curr. Opin. Colloid Interface Sci., 1, pp. 416-423
  • Fang, F., Szleifer, I., (2002) Langmuir, 18, pp. 5497-5510
  • Szleifer, I., (1997) Biophys. J., 72, pp. 595-612
  • Szleifer, I., (1997) Phys. A, 244, pp. 370-388
  • Longo, G., Szleifer, I., (2005) Langmuir, 21, pp. 11342-11351
  • Longo, G.S., Thompson, D.H., Szleifer, I., (2008) Langmuir, 24, pp. 10324-10333
  • Nap, R.J., Szleifer, I., (2013) Biomater. Sci., 1, pp. 814-823
  • Tagliazucchi, M., Szleifer, I., (2015) J. Am. Chem. Soc., 137, pp. 12539-12551
  • Nap, R., Gong, P., Szleifer, I., (2006) J. Polym. Sci., Part B: Polym. Phys., 44, pp. 2638-2662
  • Nap, R.J., Božič, A.L., Szleifer, I., Podgornik, R., (2014) Biophys. J., 107, pp. 1970-1979
  • Wang, D., Nap, R.J., Lagzi, I.N., Kowalczyk, B., Han, S., Grzybowski, B.A., Szleifer, I., (2011) J. Am. Chem. Soc., 133, pp. 2192-2197
  • Nap, R.J., Park, S.H., Szleifer, I., (2014) J. Polym. Sci., Part B: Polym. Phys., 52, pp. 1689-1699
  • Shvartzman-Cohen, R., Nativ-Roth, E., Baskaran, E., Levi-Kalisman, Y., Szleifer, I., Yerushalmi-Rozen, R., (2004) J. Am. Chem. Soc., 126, pp. 14850-14857
  • Tagliazucchi, M., Szleifer, I., (2012) Soft Matter, 8, p. 7292
  • Andrieu-Brunsen, A., Micoureau, S., Tagliazucchi, M., Szleifer, I., Azzaroni, O., Soler-Illia, G.J.D.A.A., (2015) Chem. Mater., 27, pp. 808-821
  • Ren, C.-L., Carvajal, D., Shull, K.R., Szleifer, I., (2009) Langmuir, 25, pp. 12283-12292
  • Tagliazucchi, M., Azzaroni, O., Szleifer, I., (2010) J. Am. Chem. Soc., 132, pp. 12404-12411
  • Tagliazucchi, M., Calvo, E.J., Szleifer, I., (2008) Langmuir, 24, pp. 2869-2877
  • Tagliazucchi, M., Calvo, E.J., Szleifer, I., (2008) J. Phys. Chem. C, 112, pp. 458-471
  • Walker, D.A., Leitsch, E.K., Nap, R.J., Szleifer, I., Grzybowski, B.A., (2013) Nat. Nanotechnol., 8, pp. 676-681
  • Carignano, M.A., Szleifer, I., (1995) J. Chem. Phys., 102, pp. 8662-8669
  • Flory, P.J., (1969) Statistical Mechanics of Chain Molecules, , Interscience Publishers, New York
  • Carignano, M.A., Szleifer, I., (1993) J. Chem. Phys., 98, pp. 5006-5018
  • Tagliazucchi, M., De La Cruz, M.O., Szleifer, I., (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 5300-5305
  • Gong, P., Genzer, J., Szleifer, I., (2007) Phys. Rev. Lett., 98, p. 018302
  • Naderi, A., Iruthayaraj, J., Pettersson, T.R., Makuska, R.A., Claesson, P.M., (2008) Langmuir, 24, pp. 6676-6682
  • Peleg, O., Tagliazucchi, M., Kröger, M., Rabin, Y., Szleifer, I., (2011) ACS Nano, 5, pp. 4737-4747
  • Dam, D.H.M., Lee, J.H., Sisco, P.N., Co, D.T., Zhang, M., Wasielewski, M.R., Odom, T.W., (2012) ACS Nano, 6, pp. 3318-3326
  • Tice, D.B., Weinberg, D.J., Mathew, N., Chang, R.P.H., Weiss, E.A., (2013) J. Phys. Chem. C, 117, pp. 13289-13296
  • Donakowski, M.D., Godbe, J.M., Sknepnek, R., Knowles, K.E., De La Cruz, M.O., Weiss, E.A., (2010) J. Phys. Chem. C, 114, pp. 22526-22534

Citas:

---------- APA ----------
Solveyra, E.G., Tagliazucchi, M. & Szleifer, I. (2016) . Anisotropic surface functionalization of Au nanorods driven by molecular architecture and curvature effects. Faraday Discussions, 191, 351-372.
http://dx.doi.org/10.1039/c6fd00020g
---------- CHICAGO ----------
Solveyra, E.G., Tagliazucchi, M., Szleifer, I. "Anisotropic surface functionalization of Au nanorods driven by molecular architecture and curvature effects" . Faraday Discussions 191 (2016) : 351-372.
http://dx.doi.org/10.1039/c6fd00020g
---------- MLA ----------
Solveyra, E.G., Tagliazucchi, M., Szleifer, I. "Anisotropic surface functionalization of Au nanorods driven by molecular architecture and curvature effects" . Faraday Discussions, vol. 191, 2016, pp. 351-372.
http://dx.doi.org/10.1039/c6fd00020g
---------- VANCOUVER ----------
Solveyra, E.G., Tagliazucchi, M., Szleifer, I. Anisotropic surface functionalization of Au nanorods driven by molecular architecture and curvature effects. Faraday Discuss. 2016;191:351-372.
http://dx.doi.org/10.1039/c6fd00020g