Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Xylanases are key enzymes for agricultural biomass saccharification for the production of cellulosic ethanol. Success in enzymatic lignocellulose bioconversion is restricted by enzyme production costs, activity and stability under harsh reaction conditions, and their performance when interacting into cellulolytic cocktails. In this work, we present the heterologous expression and enzymatic characterization of a novel endo-β-1,4 xylanase of glycoside hydrolase family 10 (GH10ps) from the white-rot basidiomycete Pycnoporus sanguineus BAFC 2126. Recombinant expression of GH10ps in Pichia pastoris showed that it is a robust enzyme active at a wide range of pHs and temperatures, and with a half-life of 3 h at 70 °C and a stability higher than 48 h at 60 °C. Recombinant GH10ps was also capable of releasing xylooligosaccharides and xylose from pretreated agricultural waste biomass and also complemented commercial cellulases in lignocellulose bioconversion to fermentable sugars. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Heterologous production and characterization of a thermostable GH10 family endo-xylanase from Pycnoporus sanguineus BAFC 2126
Autor:Niderhaus, C.; Garrido, M.; Insani, M.; Campos, E.; Wirth, S.
Filiación:Laboratorio de Agrobiotecnología, DFBMC-FCEN, Universidad de Buenos Aires and Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA-CONICET-UBA, Piso 2, Pabellón 2, Ciudad UniversitariaBuenos Aires C1428EG, Argentina
Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y Nicolas Repetto s/n (1686), Hurlingham, Buenos Aires, Argentina
Palabras clave:Biomass Bioconversion–GH10 Family; Pichia pastoris; Thermostable endoxylanase; Agricultural wastes; Agriculture; Bioconversion; Cellulose; Cellulosic ethanol; Enzyme activity; Lignin; Saccharification; Sugars; Yeast; Biomass bioconversions; Glycoside hydrolase family 10; Heterologous expression; Heterologous production; Lignocellulose bioconversions; Pichia Pastoris; Thermostable endoxylanase; White-rot basidiomycetes; Biomass
Año:2018
Volumen:67
Página de inicio:92
Página de fin:98
DOI: http://dx.doi.org/10.1016/j.procbio.2018.01.017
Título revista:Process Biochemistry
Título revista abreviado:Process Biochem.
ISSN:13595113
CODEN:PBCHE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13595113_v67_n_p92_Niderhaus

Referencias:

  • Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S., Microbial xylanases and their industrial applications: a review (2001) Appl. Microbiol. Biotechnol., 56, pp. 326-338
  • Collins, T., Gerday, C., Feller, G., Xylanases: xylanase families and extremophilic xylanases (2005) FEMS Microbiol. Rev., 29, pp. 3-23
  • Juturu, V., Wu, J.C., Microbial xylanases: engineering: production and industrial applications (2012) Biotechnol. Adv., 30, pp. 1219-1227
  • Moreira, L.R., Filho, E.X., Insights into the mechanism of enzymatic hydrolysis of xylan (2016) Appl. Microbiol. Biotechnol., 100, pp. 5205-5214
  • Saha, B.C., α-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology (2000) Biotechnol. Adv., 18 (2000), pp. 403-423
  • Shallom, D., Shoham, Y., Microbial hemicellulases (2003) Curr. Opin. Microbiol., 6, pp. 219-228
  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., Henrissat, B., The carbohydrate-active enzymes database (CAZy) in 2013 (2014) Nucleic Acids Res., 42, pp. D490-D495
  • Polizeli, M.L., Rizzatti, A.C., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S., Xylanases from fungi: properties and industrial applications (2005) Appl. Microbiol. Biotechnol., 67, pp. 577-591
  • Biely, P., Vršanská, M., Tenkanen, M., Kluepfel, D.E., β-1,4-xylanase families: differences in catalytic properties (1997) J. Biotechnol., 57, pp. 151-166
  • Kumar, V., Marín-Navarro, J., Shukla, P., Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives (2016) World J. Microbiol. Biotechnol., 32, p. 34
  • Verma, D., Satyanarayana, T., Molecular approaches for ameliorating microbial xylanases (2012) Bioresour. Technol., 117, pp. 360-367
  • Uzan, E., Nousiainen, P., Balland, V., Sipila, J., Piumi, F., Navarro, D., Asther, M., Lomascolo, A., High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications (2010) J. Appl. Microbiol., 108, pp. 2199-2213
  • Sigoillot, C., Lomascolo, A., Record, E., Robert, J.L., Asther, M., Sigoillot, J.C., Lignocellulolytic and hemicellulolytic system of Pycnoporus cinnabarinus: isolation and characterization of a cellobiose dehydrogenase and a new xylanase (2002) Enzyme Microb. Technol., 31, pp. 876-883
  • Falkoski, D.L., Guimarães, V.M., de Almeida, M.N., Alfenas, A.C., Colodette, J.L., de Rezende, S.T., Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification (2012) Appl. Biochem. Biotechnol., 166, pp. 1586-1603
  • Levasseur, A., Lomascolo, A., Chabrol, O., Ruiz-Dueñas, F.J., Boukhris-Uzan, E., Piumi, F., Kües, U., Record, E., The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown (2014) BMC Genomics, 15, p. 486
  • Couturier, M., Navarro, D., Chevret, D., Henrissat, B., Piumi, F., Ruiz-Dueñas, F.J., Martinez, A.T., Rosso, M.N., Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus (2015) Biotechnol. Biofuels, 8, p. 216
  • Rohr, C.O., Levin, L.N., Mentaberry, A.N., Wirth, S.A., A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome (2013) PLoS One, 8, p. e81033
  • Miyauchi, S., Navarro, D., Grigoriev, I.V., Lipzen, A., Riley, R., Chevret, D., Grisel, S., Rosso, M.N., Visual comparative omics of fungi for plant biomass deconstruction (2016) Front. Microbiol., 7, p. 1335
  • Daou, M., Piumi, F., Cullen, D., Record, E., Faulds, C.B., Heterologous production and characterization of two glyoxal oxidases from Pycnoporus cinnabarinus (2016) Appl. Environ. Microbiol., 82, pp. 4867-4875
  • Piumi, F., Levasseur, A., Navarro, D., Zhou, S., Mathieu, Y., Ropartz, D., Ludwig, R., Record, E., A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme (2014) Appl. Microbiol. Biotechnol., 98, pp. 10105-10118
  • Mathieu, Y., Piumi, F., Valli, R., Aramburu, J.C., Ferreira, P., Faulds, C.B., Record, E., Activities of secreted aryl alcohol quinone oxidoreductases from Pycnoporus cinnabarinus provide insights into fungal degradation of plant biomass (2016) Appl. Environ. Microbiol., 82, pp. 2411-2423
  • Teather, R.M., Wood, P.J., Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from bovine rumen (1982) Appl. Environ. Microbiol., 43, pp. 777-780
  • Campos, P., Levin, L., Wirth, S.A., Heterologous Production: characterization and dye decolorization ability of a novel thermostable laccase isoenzyme from Trametes trogii BAFC 463 (2016) Process Biochem., 51, pp. 895-903
  • Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar (1959) Anal. Chem., 31, pp. 426-428
  • Ghio, S., Insani, E.M., Piccinni, F.E., Talia, P.M., Grasso, D.H., Campos, E., GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass (2016) Microbiol. Res., 186, pp. 16-26
  • Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes (2012) Science, 336, pp. 1715-1719
  • MacLeod, A.M., Lindhorst, T., Withers, S.G., Warren, R.A., The acid/base catalyst in the exoglucanase/xylanase from Cellulomonas fimi is glutamic acid 127: evidence from detailed kinetic studies of mutants (1994) Biochemistry, 33, pp. 6371-6376
  • Tull, D., Withers, S.G., Gilkes, N.R., Kilburn, D.G., Warren, R.A., Aebersold, R., Glutamic acid 274 is the nucleophile in the active site of a retaining exoglucanase from Cellulomonas fimi (1991) J. Biol. Chem., 266, pp. 15621-15625
  • Gilkes, N.R., Henrissat, B., Kilburn, D.G., Miller, R.C.J., Warren, R.A.J., Domains in microbial β-1, 4-glycanases: sequence conservation, function, and enzyme families (1991) Microbiol. Rev., 55, pp. 303-315
  • Guillén, D., Sánchez, S., Rodriguez-Sanoja, S., Carbohydrate-binding domains: multiplicity of biological roles (2010) Appl. Microbiol. Biotechnol., 85, pp. 1241-1249
  • Várnai, A., Mäkelä, M.R., Djajadi, D.T., Rahikainen, J., Hatakka, A., Viikari, L., Carbohydrate-binding modules of fungal cellulases: occurrence in nature function, and relevance in industrial biomass conversion (2014) Adv. Appl. Microbiol., 88, pp. 103-165
  • Gavel, Y., von Heijne, G., Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering (1990) Protein Eng., 3, pp. 433-442
  • Litthauer, D., van Vuuren, M.J., van Tonder, A., Wolfaardt, F.W., Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC108) (2007) Enzyme Microb. Technol., 40, pp. 563-568
  • Wang, X., Luo, H., Yu, W., Ma, R., You, S., Liu, W., Hou, L., Yao, B., A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry (2016) Food Chem., 199, pp. 516-523
  • Chang, X., Xu, B., Bai, Y., Luo, H., Ma, R., Shi, P., Yao, B., Role of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris (2017) PLoS One, 12 (2), p. e0171111
  • Decelle, B., Tsang, A., Storms, R.K., Cloning, functional expression and characterization of three Phanerochaete chrysosporium endo-1,4-β-xylanases (2004) Curr. Genet., 46, pp. 166-175
  • Ribeiro, L.F., de Lucas, R.C., Vitcosque, G.L., Ribeiro, L.F., Ward, R.J., Rubio, M.V., A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology (2014) Biotechnol. Biofuels, 7, p. 115
  • Du, Y., Shi, P., Huang, H., Zhang, X., Luo, H., Wang, Y., Yao, B., Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry (2013) Bioresour. Technol., 130, pp. 161-167
  • Chadha, B.S., Ajay, B.K., Mellon, F., Bhat, M.K., Two endoxylanases active and stable at alkaline pH from the newly isolated thermophilic fungus, Myceliophthora sp. IMI 387099 (2004) J. Biotechnol., 109, pp. 227-237
  • Cobucci-Ponzano, B., Strazzulli, A., Iacono, R., Masturzo, G., Giglio, R., Rossi, M., Moracci, M., Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries (2015) Enzyme Microb. Technol., 78, pp. 63-73
  • Inoue, H., Kishishita, S., Kumagai, A., Kataoka, M., Fujii, T., Ishikawa, K., Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose (2015) Biotechnol. Biofuels, 8, p. 77
  • Goldbeck, R., Damásio, A.R., Gonçalves, T.A., Machado, C.B., Paixão, D.A., Wolf, L.D., Mandelli, F., Squina, F.M., Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications (2014) Appl. Microbiol. Biotechnol., 98, pp. 8513-8525
  • Harris, P.V., Xu, F., Kreel, N.E., Kang, C., Fukuyama, S., New enzyme insights drive advances in commercial ethanol production (2014) Curr. Opin. Chem. Biol., 19, pp. 162-170
  • Gonçalves, G.A., Takasugi, Y., Jia, L., Mori, Y., Noda, S., Tanaka, T., Ichinose, H., Kamiya, N., Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse (2015) Enzyme Microb. Technol., 72, pp. 16-24
  • Hu, J., Arantes, V., Saddler, J.N., The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? (2011) Biotechnol. Biofuels, 4, p. 36
  • Hu, J., Arantes, V., Pribowo, A., Saddler, J.N., The synergistic action of accessory enzymes enhances the hydrolytic potential of a cellulase mixture but is highly substrate specific (2013) Biotechnol. Biofuels, 6, p. 112
  • Valadares, F., Gonçalves, T.A., Gonçalves, D.S., Segato, F., Romanel, E., Milagres, A.M., Squina, F.M., Ferraz, A., Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification (2016) Biotechnol. Biofuels, 9, p. 110

Citas:

---------- APA ----------
Niderhaus, C., Garrido, M., Insani, M., Campos, E. & Wirth, S. (2018) . Heterologous production and characterization of a thermostable GH10 family endo-xylanase from Pycnoporus sanguineus BAFC 2126. Process Biochemistry, 67, 92-98.
http://dx.doi.org/10.1016/j.procbio.2018.01.017
---------- CHICAGO ----------
Niderhaus, C., Garrido, M., Insani, M., Campos, E., Wirth, S. "Heterologous production and characterization of a thermostable GH10 family endo-xylanase from Pycnoporus sanguineus BAFC 2126" . Process Biochemistry 67 (2018) : 92-98.
http://dx.doi.org/10.1016/j.procbio.2018.01.017
---------- MLA ----------
Niderhaus, C., Garrido, M., Insani, M., Campos, E., Wirth, S. "Heterologous production and characterization of a thermostable GH10 family endo-xylanase from Pycnoporus sanguineus BAFC 2126" . Process Biochemistry, vol. 67, 2018, pp. 92-98.
http://dx.doi.org/10.1016/j.procbio.2018.01.017
---------- VANCOUVER ----------
Niderhaus, C., Garrido, M., Insani, M., Campos, E., Wirth, S. Heterologous production and characterization of a thermostable GH10 family endo-xylanase from Pycnoporus sanguineus BAFC 2126. Process Biochem. 2018;67:92-98.
http://dx.doi.org/10.1016/j.procbio.2018.01.017