Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Purine arabinosides are well known antiviral and antineoplastic drugs. Since their chemical synthesis is complex, time-consuming, and polluting, enzymatic synthesis provides an advantageous alternative. In this work, we describe the microbial whole cell synthesis of purine arabinosides through nucleoside phosphorylase-catalyzed transglycosylation starting from their pyrimidine precursors. By screening of our microbial collection, Citrobacter koseri (CECT 856) was selected as the best biocatalyst for the proposed biotransformation. In order to enlarge the scale of the transformations to 150 mL for future industrial applications, the biocatalyst immobilization by entrapment techniques and its behavior in different reactor configurations, considering both batch and continuous processes, were analyzed. C. koseri immobilized in agarose could be used up to 68 times and the storage stability was at least 9 months. By this approach, fludarabine (58% yield in 14 h), vidarabine (71% yield in 26 h) and 2,6-diaminopurine arabinoside (77% yield in 24 h), were prepared. © 2012 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Use of Citrobacter koseri whole cells for the production of arabinonucleosides: A larger scale approach
Autor:Nóbile, M.; Médici, R.; Terreni, M.; Lewkowicz, E.S.; Iribarren, A.M.
Filiación:Biotransformation Laboratory, Universidad Nacional de Quilmes, R.S. Peña 352, 1876 Bernal, Buenos Aires, Argentina
Italian Biocatalysis Center, PBL Drug Science Department, Università Degli Studi, via Taramelli 12, I-27100 Pavia, Italy
INGEBI, CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
Palabras clave:Citrobacter koseri; Fludarabine; Immobilized biocatalysts; Transglycosylation; Vidarabine; Citrobacter koseri; Fludarabine; Immobilized biocatalysts; Transglycosylation; Vidarabine; Enzyme activity; Glycosylation; Industrial applications; Phosphorylation; Biocatalysts; Citrobacter koseri
Año:2012
Volumen:47
Número:12
Página de inicio:2182
Página de fin:2188
DOI: http://dx.doi.org/10.1016/j.procbio.2012.08.011
Título revista:Process Biochemistry
Título revista abreviado:Process Biochem.
ISSN:13595113
CODEN:PBCHE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13595113_v47_n12_p2182_Nobile

Referencias:

  • De Clercq, E., A 40-year journey in search of selective antiviral chemotherapy (2011) Annu Rev Pharmacol Toxicol, 51, pp. 1-24
  • Woltermann, C.J., Lapin, Y.A., Kunnen, K.B., Tueting, D.R., Sanchez, I.H., A stereoselective synthesis of 9-(3-O-benzyl-5-Otetrahydropyranyl-b-d- arabinofuranosyl)adenine, a potentially useful intermediate for ribonucleoside synthesis (2004) Tetrahedron, 60, pp. 3445-3449
  • Li, N., Smith, T.J., Zong, M.-H., Biocatalytic transformation of nucleoside derivatives (2010) Biotechnol Adv, 28, pp. 348-366
  • Liang, S., Li, W., Gao, T., Zhu, X., Yang, G., Ren, D., Enzymatic synthesis of 2′-deoxyadenosine and 6-methylpurine- 2′-deoxyriboside by Escherichia coli DH5α overexpressing nucleoside phosphorylases from Escherichia coli BL21 (2010) J Biosci Bioeng, 110, pp. 165-168
  • Lewkowicz, E.S., Iribarren, A.M., Nucleoside phosphorylases (2006) Curr Org Chem, 10, pp. 1197-1215
  • Miwa, N., Kurosaki, K., Yoshida, Y., Kurokawa, M., Saito, S., Shiraki, K., Comparative efficacy of acyclovir and vidarabine on the replication of varicella-zoster virus (2005) Antiviral Res, 65, pp. 49-55
  • Nabhan, C., Gartenhaus, R., Tallman, M., Purine nucleosides analogs and combination therapies in B-cell chronic lymphocytic leukemia (2004) Leuk Res, 28, pp. 429-442
  • Robak, T., Korycka, A., Lech-Maranda, E., Robak, P., Current status of older and new purine nucleoside analogues in the treatment of lymphoproliferative diseases (2009) Molecules, 14, pp. 1183-1226
  • Mahmoudian, M., Eaddy, J., Dawson, M., Enzymatic acylation of 506U78 (2-amino-9-beta-d-arabinofuranosyl-6- methoxy-9H-purine), a powerful new anti-leukaemic agent (1999) Biotechnol Appl Biochem, 29, pp. 229-233
  • Krenitsky, T.A., Koszalka, G.W., Tuttle, J.V., Rideout, J.L., Elion, G.B., An enzymatic synthesis of purine d-arabinonucleosides (1981) Carbohydr Res, 97, pp. 139-146
  • Utagawa, T., Enzymatic preparation of nucleoside antibiotics (1999) J Mol Catal B: Enzym, 6, pp. 215-222
  • Médici, R., Lewkowicz, E.S., Iribarren, A.M., Microbial synthesis of 2,6-diaminopurine nucleosides (2006) J Mol Catal B: Enzym, 39, pp. 40-44
  • Wei, X., Ding, Q., Ou, L., Zhang, L., Wang, C., Two-step enzymatic synthesis of guanine arabinoside (2008) Chin J Chem Eng, 16, pp. 934-937
  • Fernandez-Lucas, J., Acebal, C., Sinisterra, J.V., Arroyo, M., De La Mata, I., Lactobacillus reuteri 2'-deoxyribosyltransferase, a novel biocatalyst for tailoring of nucleosides (2010) Appl Environ Microbiol, 76, pp. 1462-1470
  • Médici, R., Iribarren, A.M., Lewkowicz, E.S., Synthesis of 9-b-d-arabinofuranosylguanine by combined use of two whole cell biocatalysts (2009) Bioorg Med Chem Lett, 19, pp. 4210-4212
  • Médici, R., Lewkowicz, E.S., Iribarren, A.M., Arthrobacter oxydans as a biocatalyst for purine deamination (2008) FEMS Microbiol Lett, 289, pp. 20-26
  • Brady, D., Jordaan, J., Advances in enzyme immobilisation (2009) Biotechnol Lett, 31, pp. 1639-1650
  • Fernandez-Lafuente, R., Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation (2009) Enzyme Microb Technol, 45, pp. 405-418
  • Visser, D.F., Hennessy, F., Rashamuse, J., Pletschke, B., Brady, D., Stabilization of Escherichia coli uridine phosphorylase by evolution and immobilization (2011) J Mol Catal B: Enzym, 68, pp. 279-285
  • Zuffi, G., Ghisotti, D., Oliva, I., Capra, E., Frascotti, G., Tonon, G., Immobilized biocatalysts for the production of nucleosides and nucleoside analogues by enzymatic transglycosylation reactions (2004) Biocatal Biotransform, 22, pp. 25-33
  • Hori, N., Watanabe, M., Sunagawa, K., Uehara, K., Mikami, Y., Production of 5-methyluridine by immobilized thermostable purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus (1991) J Biotechnol, 17, pp. 121-131
  • Junter, G.A., Jouenne, T., Immobilized viable microbial cells: From the process to the proteome or the cart before the horse (2004) Biotechnol Adv, 22, pp. 633-658
  • Gerbsch, N., Buchholz, R., New processes and actual trends in biotechnology (1995) FEMS Microbiol Rev, 16, pp. 259-269
  • Ewing, D.F., Holy, A., Votruba, I., Humble, R.W., MacKenzie, G., Hewedi, F., Synthesis of 4 and 5-amino-1-(2-deoxy-d-erythro-pentofuranosyl)imidazole nucleosides by chemical and biotransformation methods (1991) Carbohydr Res, 216, pp. 109-118
  • Trelles, J.A., Bentancor, L., Schoijet, A., Porro, S., Lewkowicz, E.S., Sinisterra, J.V., Immobilized Escherichia coli BL21 as a catalyst for the synthesis of adenine and hypoxanthine nucleosides (2004) Chem Biodiv, 1, pp. 280-288
  • Iaskovich, G.A., Iakovleva, E.P., Microbiological synthesis of virazole by immobilized cells (1999) Prikl Biokhim Mikrobiol, 35, pp. 146-149
  • Trelles, J.A., Fernández, M., Lewkowicz, E.S., Iribarren, A.M., Sinisterra, J.V., Purine nucleoside synthesis from uridine using immobilised Enterobacter gergoviae CECT 875 whole cells (2003) Tetrahedron Lett, 44, pp. 2605-2609
  • Trelles, J.A., Lewkowicz, E.S., Sinisterra, J.V., Free, I.A.M., Immobilised, Citrobacter amalonaticus CECT 863 as a biocatalyst for nucleoside synthesis (2004) Int J Biotechnol, 6, pp. 376-384
  • Trelles, J.A., Valino, A.L., Runza, V., Lewkowicz, E.S., Iribarren, A.M., Screening of catalytically active microorganisms for the synthesis of 6-modified purine nucleosides (2005) Biotechnol Lett, 27, pp. 759-763
  • Utagawa, T., Morisawa, H., Yoshinaga, F., Yamazaki, A., Mitsugi, K., Hirose, Y., Microbiological synthesis of adenine arabinoside (1985) Agric Biol Chem, 49, pp. 1053-1058
  • Rastogi, S., Kumar, A., Mehra, N.K., Makhijani, S.D., Manoharan, A., Gangal, V., Development and characterization of a novel immobilized microbial membrane for rapid determination of biochemical oxygen demand load in industrial waste-waters (2003) Biosens Bioelectron, 18, pp. 23-29
  • Lloyd, J.R., Lovley, D.R., Microbial detoxification of metals and radionuclides (2001) Curr Opin Biotechnol, 12, pp. 248-253
  • Lewkowicz, E., Martínez, N., Rogert, M.C., Porro, S., Iribarren, A., An improved microbial sinthesis of purine nucleosides (2000) Biotechnol Lett, 22, pp. 1277-1280
  • Krenitzky, T., Koszalka, G., Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases (1981) Biochemistry, 20, pp. 3615-3621
  • Sheldon, R.A., Immobilization, E., The quest for optimum performance (2007) Adv Synth Catal, 349, pp. 1289-1307
  • Weisz, P.B., Diffusion and chemical transformation (1973) Science, 179, pp. 433-440
  • Yokozeki, K., Tsuji, T., A novel enzymatic method for the production of purine-2′- deoxyribonucleosides (2000) J Mol Catal B: Enzym, 10, pp. 207-213

Citas:

---------- APA ----------
Nóbile, M., Médici, R., Terreni, M., Lewkowicz, E.S. & Iribarren, A.M. (2012) . Use of Citrobacter koseri whole cells for the production of arabinonucleosides: A larger scale approach. Process Biochemistry, 47(12), 2182-2188.
http://dx.doi.org/10.1016/j.procbio.2012.08.011
---------- CHICAGO ----------
Nóbile, M., Médici, R., Terreni, M., Lewkowicz, E.S., Iribarren, A.M. "Use of Citrobacter koseri whole cells for the production of arabinonucleosides: A larger scale approach" . Process Biochemistry 47, no. 12 (2012) : 2182-2188.
http://dx.doi.org/10.1016/j.procbio.2012.08.011
---------- MLA ----------
Nóbile, M., Médici, R., Terreni, M., Lewkowicz, E.S., Iribarren, A.M. "Use of Citrobacter koseri whole cells for the production of arabinonucleosides: A larger scale approach" . Process Biochemistry, vol. 47, no. 12, 2012, pp. 2182-2188.
http://dx.doi.org/10.1016/j.procbio.2012.08.011
---------- VANCOUVER ----------
Nóbile, M., Médici, R., Terreni, M., Lewkowicz, E.S., Iribarren, A.M. Use of Citrobacter koseri whole cells for the production of arabinonucleosides: A larger scale approach. Process Biochem. 2012;47(12):2182-2188.
http://dx.doi.org/10.1016/j.procbio.2012.08.011