Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background and aims: Biological processes in all organisms are controlled by environmental conditions, however, information concerning the molecular responses to external pH is scarce. In this work we studied the pH response of UGA4 gene encoding δ-aminolevulinic acid and γ-aminobutyric acid permease in Saccharomyces cerevisiae. Methods: We analyzed the effect of pH on the expression of UGA4 gene measuring β-galactosidase activity in cells carrying a UGA4::lacZ fusion gene. Results: Results indicate that UGA4 expression is higher at acidic pH. The expression of UGA3 and UGA35 genes, which encode two positive transcription factors, is not regulated by external pH, while the expression of UGA43 gene encoding a repressor of UGA4 transcription is dependent on pH. Using a strain lacking Uga43p we clearly showed that the effect of ambient pH on UGA4 expression is not a secondary effect of the pH regulation on UGA43. We have also demonstrated that the effect of pH can only be detected when UGA4 gene is not subject to a strong repression by Uga43p nor to GABA induction. Conclusion: Here, we demonstrate that UGA4 is an acid-expressed gene. This regulation is probably mediated by Rim101p through the consensus site 5′-GCCARG-3′ at 237 bp preceding the UGA4 coding sequence (201). © 2001 Elsevier Science Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:UGA4 gene encoding the γ-aminobutyric acid permease in Saccharomyces cerevisiae is an acid-expressed gene
Autor:Moretti, M.B.; Batlle, A.; Garcia, S.C.
Filiación:Centro De Investigaciones Sobre Porfirinas Y Porfirias. CIPYP (CONICET, FCEyN, UBA), Ciudad Universitaria, Pabellón II, (1428), Buenos Aires, Argentina
Viamonte 1881, 10o A, C1056ABA Buenos Aires, Argentina
Palabras clave:γ-aminobutyric acid; δ-aminolevulinic acid; Ambient pH; Saccharomyces cerevisiae; Transcriptional regulation; UGA4 gene; 4 aminobutyric acid; acid; aminolevulinic acid; bacterial enzyme; beta galactosidase; permease; protein derivative; protein Rim101p; transcription factor; unclassified drug; acidity; article; binding site; consensus sequence; controlled study; enzyme activity; fusion gene; gene expression; genetic code; nonhuman; pH; protein induction; repressor gene; Saccharomyces cerevisiae; transcription regulation; Aminolevulinic Acid; beta-Galactosidase; Binding Sites; GABA Plasma Membrane Transport Proteins; Hydrogen-Ion Concentration; Lac Operon; Organic Anion Transporters; Promoter Regions (Genetics); Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Saccharomyces cerevisiae
Año:2001
Volumen:33
Número:12
Página de inicio:1202
Página de fin:1207
DOI: http://dx.doi.org/10.1016/S1357-2725(01)00085-1
Título revista:International Journal of Biochemistry and Cell Biology
Título revista abreviado:Int. J. Biochem. Cell Biol.
ISSN:13572725
CODEN:IJBBF
CAS:Aminolevulinic Acid, 106-60-5; beta-Galactosidase, EC 3.2.1.23; GABA permease, 69913-01-5; GABA Plasma Membrane Transport Proteins; Organic Anion Transporters; Saccharomyces cerevisiae Proteins; UGA4 protein, S cerevisiae
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13572725_v33_n12_p1202_Moretti

Referencias:

  • Espeso, E.A., Peñalva, M.A., Three binding sites for the Aspergillus nidulans PacC Zn-finger transcription factor are necessary and sufficient for regulation by ambient pH of the isopenillin N synthase gene promoter (1996) J. Biol. Chem., 271, pp. 28825-28830
  • Suárez, T., Peñalva, M.A., Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster (1996) Mol. Microbiol., 20, pp. 529-540
  • Lambert, M., Blaudin-Roland, S., Louedec, F.L., Lepingle, A., Gaillardin, C., Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: Identification of a RIM101/PacC homolog (1997) Mol. Cell. Biol., 17, pp. 3966-3976
  • Davis, D., Wilson, R.B., Mitchell, A.P., RIM101-dependent and independent pathways govern pH responses in Candida albicans (2000) Mol. Cell. Biol., 20, pp. 971-978
  • Lamb, T.M., Xu, W., Diamond, A., Mitchell, A.P., Alkaline response genes of Saccharomyces cerevisiae and their relationship to the Rim101 pathway (2001) J. Biol. Chem., 276, pp. 1850-1856
  • Tilburn, J., Sarkar, S., Widdrick, D.A., Espeso, E.A., Orejas, M., Mungroo, J., Peñalva, M.A., Arnst H.N., Jr., The Aspergillus PacC zinc-finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH (1995) EMBO J., 14, pp. 779-790
  • Hutchings, H., Stahmann, K.P., Roels, S., Espeso, E.A., Timberlake, W.E., Arnst H.N., Jr., Tilburn, J., The multiply-regulated gabA gene encoding the GABA permease of Aspergillus nidulans: A score of exons (1999) Mol. Microbiol., 32, pp. 557-568
  • MacCabe, A.P., Orejas, M., Pérez-González, J.A., Ramón, D., Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH (1998) J. Bacteriol., 180, pp. 1331-1333
  • Sarkar, S., Caddick, M.X., Bignell, E., Tilburn, J., Arnst H.N., Jr., Regulation of gene expression by ambient pH in Aspergillus: Genes expressed at acid pH (1996) Biochem. Soc. Trans., 24, pp. 360-363
  • Espeso, E.A., Arnst H.N., Jr., On the mechanism by which alkaline pH prevents expression of an acid-expressed gene (2000) Mol. Cell. Biol., 20, pp. 335-3363
  • Li, W., Mitchell, A.P., Proteolytic activation of RIM1p, a positive regulator of yeast sporulation and invasive growth (1997) Genetics, 145, pp. 63-73
  • Orejas, M., Espeso, E.A., Tilburn, J., Sarkar, Arnst H.N., Jr., Peñalva, M.A., Activation of the Aspergillus PacC transcription factor in response to alkaline pH requires proteolysis of the carboxy-terminal moiety (1995) Genes Dev., 9, pp. 1622-1632
  • Grenson, M., Muyldermans, F., Broman, K., Vissers, S., 4-Aminobutyric acid (GABA) uptake in baker's yeast Saccharomyces cerevisiae is mediated by the general amino acid permease, the proline permease and a specific permease integrated into the GABA-catabolic pathway (1987) Biochemistry (Life Sci. Adv.), 6, pp. 35-39
  • André, B., Talibi, D., Soussi-Boudekou, S., Hein, C., Vissers, S., Coornaert, D., Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5′-GAT(A/T)A-3′ upstream from UGA4 gene of Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 558-564
  • Bricmont, P.A., Daugherty, J.R., Cooper, T.G., The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae (1991) Mol. Cell. Biol., 11, pp. 1161-1166
  • Cunningham, T.S., Dorrington, R.A., Cooper, T.G., The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsible regulation and DAL80 protein binding in Saccharomyces cerevisiae (1994) J. Bacteriol., 178, pp. 3470-3479
  • Bermúdez Moretti, M., Correa García, S., Batlle, A., UGA4 gene expression in Saccharomyces cerevisiae depends on cell growth conditions (1998) Cell. Mol. Biol., 44, pp. 585-590
  • Correa García, S., Bermúdez Moretti, M., Batlle, A., Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p (2000) FEMS Microbiol. Lett., 184, pp. 219-224
  • Béchet, J., Grenson, M., Wiame, J.-M., Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae (1970) Eur. J. Biochem., 12, pp. 31-39
  • Vavra, J.J., Johnson, M.J., Aerobic and anaerobic biosynthesis of amino acids by baker's yeast (1956) J. Biol. Chem., 220, pp. 33-43
  • Jacobs, P., Jauniaux, J.-C., Grenson, M., A cis dominant regulatory mutation linked to the argB-argC gene cluster in Saccharomyces cerevisiae (1980) J. Mol. Biol., 139, pp. 691-704
  • Gietz, R.D., Schiestl, R.H., Transforming yeast with DNA (1995) Methods Mol. Cell. Biol., 5, pp. 255-269
  • Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: Laboratory Manual, Second ed., , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Myers, A.M., Tzagoloff, A., Kinney, D.M., Lusty, C.J., Yeast shutlle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions (1986) Gene, 45, pp. 299-310
  • Miller, J.H., (1972) Experiments in Molecular Genetics, p. 403. , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Var der Rest, M.E., Kamminga, A.H., Nakano, A., Raku, Y., Poolman, B., Konings, W.N., The plasma membrane of Saccharomyces cerevisiae: Structure, function and biogenesis (1995) Microbiol. Rev., 59, pp. 304-322
  • Bermúdez Moretti, M., Correa García, S., Ramos, E., Batlle, A., δ-Aminolevulinic acid uptake is mediated by the γ-aminobutyric acid-specific permease Uga4 (1996) Cell. Mol. Biol., 42, pp. 519-523
  • Quandt, K., Frech, K., Karas, H., Wingender, E., Werner, T., MatInd and MatInsepector-New fast and versatile tools for detection of consensus matches in nucleotide sequence data (1995) Nucleic Acid Res., 23, pp. 4878-4884
  • Davis, D., Wilson, B., Mitchell, A.P., RIM101-dependent and independent pathways govern pH responses in Candida albicans (2000) Mol. Cell. Biol., 20, pp. 971-978

Citas:

---------- APA ----------
Moretti, M.B., Batlle, A. & Garcia, S.C. (2001) . UGA4 gene encoding the γ-aminobutyric acid permease in Saccharomyces cerevisiae is an acid-expressed gene. International Journal of Biochemistry and Cell Biology, 33(12), 1202-1207.
http://dx.doi.org/10.1016/S1357-2725(01)00085-1
---------- CHICAGO ----------
Moretti, M.B., Batlle, A., Garcia, S.C. "UGA4 gene encoding the γ-aminobutyric acid permease in Saccharomyces cerevisiae is an acid-expressed gene" . International Journal of Biochemistry and Cell Biology 33, no. 12 (2001) : 1202-1207.
http://dx.doi.org/10.1016/S1357-2725(01)00085-1
---------- MLA ----------
Moretti, M.B., Batlle, A., Garcia, S.C. "UGA4 gene encoding the γ-aminobutyric acid permease in Saccharomyces cerevisiae is an acid-expressed gene" . International Journal of Biochemistry and Cell Biology, vol. 33, no. 12, 2001, pp. 1202-1207.
http://dx.doi.org/10.1016/S1357-2725(01)00085-1
---------- VANCOUVER ----------
Moretti, M.B., Batlle, A., Garcia, S.C. UGA4 gene encoding the γ-aminobutyric acid permease in Saccharomyces cerevisiae is an acid-expressed gene. Int. J. Biochem. Cell Biol. 2001;33(12):1202-1207.
http://dx.doi.org/10.1016/S1357-2725(01)00085-1