Abstract:
Dysregulation of histone deacetylases (HDAC) has been proposed as a potential contributor to aberrant transcriptional profiles that can lead to changes in cognitive functions. It is known that METH negatively impacts the prefrontal cortex (PFC) leading to cognitive decline and addiction whereas modafinil enhances cognition and has a low abuse liability. We investigated if modafinil (90 mg/kg) and methamphetmine (METH) (1 mg/kg) may differentially influence the acetylation status of histones 3 and 4 (H3ac and H4ac) at proximal promoters of class I, II, III, and IV HDACs. We found that METH produced broader acetylation effects in comparison with modafinil in the medial PFC. For single dose, METH affected H4ac by increasing its acetylation at class I Hdac1 and class IIb Hdac10, decreasing it at class IIa Hdac4 and Hdac5. Modafinil increased H3ac and decreased H4ac of Hdac7. For mRNA, single-dose METH increased Hdac4 and modafinil increased Hdac7 expression. For repeated treatments (4 d after daily injections over 7 d), we found specific effects only for METH. We found that METH increased H4ac in class IIa Hdac4 and Hdac5 and decreased H3/H4ac at class I Hdac1, Hdac2, and Hdac8. At the mRNA level, repeated METH increased Hdac4 and decreased Hdac2. Class III and IV HDACs were only responsive to repeated treatments, where METH affected the H3/H4ac status of Sirt2, Sirt3, Sirt7, and Hdac11. Our results suggest that HDAC targets linked to the effects of modafinil and METH may be related to the cognitive-enhancing vs cognitive-impairing effects of these psychostimulants. © 2019 Society for the Study of Addiction
Registro:
Documento: |
Artículo
|
Título: | HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex |
Autor: | González, B.; Bernardi, A.; Torres, O.V.; Jayanthi, S.; Gomez, N.; Sosa, M.H.; García-Rill, E.; Urbano, F.J.; Cadet, J.-L.; Bisagno, V. |
Filiación: | Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Department of Behavioral Sciences, San Diego Mesa College, San Diego, CA, United States Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
|
Palabras clave: | HDAC; histone acetylation; methamphetamine; modafinil; prefrontal cortex |
Año: | 2019
|
DOI: |
http://dx.doi.org/10.1111/adb.12737 |
Título revista: | Addiction Biology
|
Título revista abreviado: | Addict. Biol.
|
ISSN: | 13556215
|
CODEN: | ADBIF
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13556215_v_n_p_Gonzalez |
Referencias:
- Zentner, G.E., Henikoff, S., Regulation of nucleosome dynamics by histone modifications (2013) Nat Struct Mol Biol, 20 (3), pp. 259-266
- Robison, A.J., Nestler, E.J., Transcriptional and epigenetic mechanisms of addiction (2011) Nat Rev Neurosci, 12 (11), pp. 623-637
- Gräff, J., Tsai, L.H., Histone acetylation: molecular mnemonics on the chromatin (2013) Nat Rev Neurosci, 14 (2), pp. 97-111
- Volmar, C.H., Wahlestedt, C., Histone deacetylases (HDACs) and brain function (2015) Neuroepigenetics, V1, pp. 20-27
- Bisagno, V., González, B., Urbano, F.J., Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits (2016) Pharmacol Res, 109, pp. 108-118
- González, B., Raineri, M., Cadet, J.L., García-Rill, E., Urbano, F.J., Bisagno, V., Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice (2014) Neuropharmacology, 87, pp. 188-197
- González, B., Rivero-Echeto, C., Muñiz, J.A., Methamphetamine blunts Ca(2+) currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex (2016) Addict Biol, 21 (3), pp. 589-602
- González, B., Jayanthi, S., Gomez, N., Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex (2018) Prog Neuropsychopharmacol Biol Psychiatry, 82, pp. 1-11
- González, B., Torres, O.V., Jayanthi, S., The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors (2019) Prog Neuropsychopharmacol Biol Psychiatry, 88, pp. 222-234
- Haberland, M., Montgomery, R.L., Olson, E.N., The many roles of histone deacetylases in development and physiology: implications for disease and therapy (2009) Nat Rev Genet, 10 (1), pp. 32-42
- Houtkooper, R.H., Pirinen, E., Auwerx, J., Sirtuins as regulators of metabolism and healthspan (2012) Nat Rev Mol Cell Biol, 13 (4), pp. 225-238
- Broide, R.S., Redwine, J.M., Aftahi, N., Young, W., Bloom, F.E., Winrow, C.J., Distribution of histone deacetylases 1-11 in the rat brain (2007) J Mol Neurosci, 31 (1), pp. 47-58
- Di Giorgio, E., Brancolini, C., Regulation of class IIa HDAC activities: it is not only matter of subcellular localization (2016) Epigenomics, 8 (2), pp. 251-269
- Chawla, S., Vanhoutte, P., Arnold, F.J., Huang, C.L., Bading, H., Neuronal activity-dependent nucleocytoplasmic shuttling of HDAC4 and HDAC5 (2003) J Neurochem, 85 (1), pp. 151-159
- Satoh, A., Imai, S., Systemic regulation of mammalian ageing and longevity by brain sirtuins (2014) Nat Commun, 5 (1), p. 4211
- Bryant, D.T., Landles, C., Papadopoulou, A.S., Disruption to schizophrenia-associated gene Fez1 in the hippocampus of HDAC11 knockout mice (2017) Sci Rep, 7 (1), p. 11900
- Seto, E., Yoshida, M., Erasers of histone acetylation: the histone deacetylase enzymes (2014) Cold Spring Harb Perspect Biol, 6 (4), p. a018713
- Godino, A., Jayanthi, S., Cadet, J.L., Epigenetic landscape of amphetamine and methamphetamine addiction in rodents (2015) Epigenetics, 10 (7), pp. 574-580
- Wang, Z., Zang, C., Cui, K., Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes (2009) Cell, 138 (5), pp. 1019-1031
- Sulzer, D., Sonders, M.S., Poulsen, N.W., Galli, A., Mechanisms of neurotransmitter release by amphetamines: a review (2005) Prog Neurobiol, 75 (6), pp. 406-433
- Wisor, J., Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions (2013) Front Neurol, 4, p. 139
- Rogge, G.A., Wood, M.A., The role of histone acetylation in cocaine-induced neural plasticity and behavior (2013) Neuropsychopharmacology, 38 (1), pp. 94-110
- Jayanthi, S., McCoy, M.T., Chen, B., Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms (2014) Biol Psychiatry, 76 (1), pp. 47-56
- Renthal, W., Kumar, A., Xiao, G., Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins (2009) Neuron, 62 (3), pp. 335-348
- Agricola, E., Verdone, L., Di Mauro, E., Caserta, M., H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1-dependent genes (2006) Mol Microbiol, 62 (5), pp. 1433-1446
- Gansen, A., Tóth, K., Schwarz, N., Langowski, J., Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study (2015) Nucleic Acids Res, 43 (3), pp. 1433-1443
- Yu, Q., Olsen, L., Zhang, X., Boeke, J.D., Bi, X., Differential contributions of histone H3 and H4 residues to heterochromatin structure (2011) Genetics, 188 (2), pp. 291-308
- Kumar, A., Choi, K.H., Renthal, W., Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum (2005) Neuron, 48 (2), pp. 303-314
- Wang, L., Lv, Z., Hu, Z., Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement (2010) Neuropsychopharmacology, 35 (4), pp. 913-928
- Fischle, W., Dequiedt, F., Hendzel, M.J., Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR (2002) Mol Cell, 9 (1), pp. 45-57
- Baltan, S., Bachleda, A., Morrison, R.S., Murphy, S.P., Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia (2011) Transl Stroke Res, 2 (3), pp. 411-423
- Guan, J.S., Haggarty, S.J., Giacometti, E., HDAC2 negatively regulates memory formation and synaptic plasticity (2009) Nature, 459 (7243), pp. 55-60
- Schuettengruber, B., Simboeck, E., Khier, H., Seiser, C., Autoregulation of mouse histone deacetylase 1 expression (2003) Mol Cell Biol, 23 (19), pp. 6993-7004
- Zhou, Y., Grummt, I., The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing (2005) Curr Biol, 15 (15), pp. 1434-1438
- Griffin, E.A., Jr., Melas, P.A., Zhou, R., Prior alcohol use enhances vulnerability to compulsive cocaine self-administration by promoting degradation of HDAC4 and HDAC5 (2017) Sci Adv, 3 (11)
- Renthal, W., Maze, I., Krishnan, V., Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli (2007) Neuron, 56 (3), pp. 517-529
- Agis-Balboa, R.C., Pavelka, Z., Kerimoglu, C., Fischer, A., Loss of HDAC5 impairs memory function: implications for Alzheimer's disease (2013) J Alzheimers Dis, 33 (1), pp. 35-44
- Sando, R., 3rd, Gounko, N., Pieraut, S., Liao, L., Yates, J., 3rd, Maximov, A., HDAC4 governs a transcriptional program essential for synaptic plasticity and memory (2012) Cell, 151 (4), pp. 821-834
- Penrod, R.D., Carreira, M.B., Taniguchi, M., Kumar, J., Maddox, S.A., Cowan, C.W., Novel role and regulation of HDAC4 in cocaine-related behaviors (2018) Addict Biol, 23 (2), pp. 653-664
- Li, X., Carreria, M.B., Witonsky, K.R., Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving (2018) Biol Psychiatry, 84 (3), pp. 213-222
- Jing, X., Sui, W.H., Wang, S., HDAC7 ubiquitination by the E3 ligase CBX4 is involved in contextual fear conditioning memory formation (2017) J Neurosci, 37, pp. 3848-3863
- Ma, C., D'Mello, S.R., Neuroprotection by histone deacetylase-7 (HDAC7) occurs by inhibition of c-jun expression through a deacetylase-independent mechanism (2011) J Biol Chem, 286 (6), pp. 4819-4828
- Jenner, P., Zeng, B.Y., Smith, L.A., Antiparkinsonian and neuroprotective effects of modafinil in the mptp-treated common marmoset (2000) Exp Brain Res, 133 (2), pp. 178-188
- Raineri, M., Gonzalez, B., Goitia, B., Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum (2012) PLoS ONE, 7 (10)
- Raineri, M., Peskin, V., Goitia, B., Attenuated methamphetamine induced neurotoxicity by modafinil administration in mice (2011) Synapse, 65 (10), pp. 1087-1098
- Ueki, A., Rosén, L., Andbjer, B., The vigilance-promoting drug modafinil counteracts the reduction of tyrosine hydroxylase immunoreactivity and of dopamine stores in nigrostriatal dopamine neurons in the male rat after a partial transection of the dopamine pathway (1993) Exp Brain Res, 93 (2), pp. 259-270
- van Vliet, S.A., Blezer, E.L., Jongsma, M.J., Vanwersch, R.A., Olivier, B., Philippens, I.H., Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy (2008) Brain Res, 1189, pp. 219-228
- Krasnova, I.N., Cadet, J.L., Methamphetamine toxicity and messengers of death (2009) Brain Res Rev, 60 (2), pp. 379-407
- Donmez, G., Outeiro, T.F., SIRT1 and SIRT2: emerging targets in neurodegeneration (2013) EMBO Mol Med, 5 (3), pp. 344-352
- Ozden, O., Park, S.H., Kim, H.S., Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress (2011) Aging (Albany NY), 3 (2), pp. 102-107
- Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., Guarente, L., Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription (2006) Genes Dev, 20 (9), pp. 1075-1080
- Yanginlar, C., Logie, C., HDAC11 is a regulator of diverse immune functions (2018) Biochim Biophys Acta, 1861 (1), pp. 54-59
- Host, L., Dietrich, J.B., Carouge, D., Aunis, D., Zwiller, J., Cocaine self-administration alters the expression of chromatin-remodelling proteins; modulation by histone deacetylase inhibition (2011) J Psychopharmacol, 25 (2), pp. 222-229
- Renthal, W., Nestler, E.J., Epigenetic mechanisms in drug addiction (2008) Trends Mol Med, 14 (8), pp. 341-350
Citas:
---------- APA ----------
González, B., Bernardi, A., Torres, O.V., Jayanthi, S., Gomez, N., Sosa, M.H., García-Rill, E.,..., Bisagno, V.
(2019)
. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addiction Biology.
http://dx.doi.org/10.1111/adb.12737---------- CHICAGO ----------
González, B., Bernardi, A., Torres, O.V., Jayanthi, S., Gomez, N., Sosa, M.H., et al.
"HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex"
. Addiction Biology
(2019).
http://dx.doi.org/10.1111/adb.12737---------- MLA ----------
González, B., Bernardi, A., Torres, O.V., Jayanthi, S., Gomez, N., Sosa, M.H., et al.
"HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex"
. Addiction Biology, 2019.
http://dx.doi.org/10.1111/adb.12737---------- VANCOUVER ----------
González, B., Bernardi, A., Torres, O.V., Jayanthi, S., Gomez, N., Sosa, M.H., et al. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addict. Biol. 2019.
http://dx.doi.org/10.1111/adb.12737