Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Introduction: Trypanosoma cruzi is the etiologic agent of American trypanosomiasis (Chagas disease), which is one of the important parasitic diseases worldwide. The number of infected people with T. cruzi diminished from 18 million in 1991 to 6 million in 2010, but it is still the most prevalent parasitic disease in the Americas. The existing chemotherapy is still deficient and based on two drugs: nifurtimox and benznidazole, which are not FDA-approved in the United States. Areas covered: This review covers the current and future directions of Chagas disease chemotherapy based on drugs that interfere with relevant metabolic pathways. This article also illustrates the challenges of diagnosis, which in recent infections, is only detected when the parasitemia is high (direct detection); whereas, in the chronic phase is reached after multiple serological tests. Expert opinion: The current chemotherapy is associated with long term treatments and severe side effects. Nifurtimox and benznidazole are able to cure at least 50% of recent infections. Nevertheless, they suffer from major drawbacks: selective drug sensitivity on different T. cruzi strains and serious side effects. The aim of this review is focused on presenting an up-to-date status of the chemotherapy and diagnosis. © 2016 Informa UK Limited, trading as Taylor & Francis Group.

Registro:

Documento: Artículo
Título:Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015)
Autor:Rodriguez, J.B.; Falcone, B.N.; Szajnman, S.H.
Filiación:Departamento de Química Orgánica and UMYMFOR (CONICET–FCEyN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:antiparasitic agents; Chagas disease; diagnosis; drug discovery; drug treatment; Trypanosoma cruzi; benznidazole; boron derivative; cysteine proteinase; geranyltransferase; hydroxymethylglutaryl coenzyme A reductase; iron superoxide dismutase; methyltransferase; methyltransferase inhibitor; nifurtimox; phosphatidylinositol 3 kinase; sialidase; squalene monooxygenase; squalene synthase; squalene synthase inhibitor; sterol 14alpha demethylase; sterol 14alpha demethylase inhibitor; trypanothione; antitrypanosomal agent; Chagas disease; diagnostic procedure; human; long term care; nonhuman; parasite identification; parasite serodiagnosis; patent; Review; Trypanosoma cruzi; unspecified side effect; animal; drug design; drug effects; drug resistance; isolation and purification; parasitemia; parasitology; Trypanosoma cruzi; Animals; Chagas Disease; Drug Design; Drug Resistance; Humans; Parasitemia; Patents as Topic; Trypanocidal Agents; Trypanosoma cruzi
Año:2016
Volumen:26
Número:9
Página de inicio:993
Página de fin:1015
DOI: http://dx.doi.org/10.1080/13543776.2016.1209487
Título revista:Expert Opinion on Therapeutic Patents
Título revista abreviado:Expert Opin. Ther. Pat.
ISSN:13543776
CODEN:EOTPE
CAS:benznidazole, 22994-85-0; cysteine proteinase, 37353-41-6; geranyltransferase, 37277-79-5, 50812-36-7; hydroxymethylglutaryl coenzyme A reductase, 37250-24-1; methyltransferase, 9033-25-4; mucosa associated lymphoid tissue lymphoma translocation protein 1; nifurtimox, 23256-30-6; phosphatidylinositol 3 kinase, 115926-52-8; sialidase, 9001-67-6; squalene monooxygenase, 9029-62-3; squalene synthase, 9077-14-9; sterol 14alpha demethylase, 60063-87-8; trypanothione, 96304-42-6; Trypanocidal Agents
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13543776_v26_n9_p993_Rodriguez

Referencias:

  • García Liñares, G., Ravaschino, E.L., Rodriguez, J.B., Progresses in the field of drug design to combat tropical protozoan parasitic diseases (2006) Curr Med Chem, 13, pp. 335-360
  • Urbina, J.A., Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches (2010) Acta Tropica, 115, pp. 55-68
  • Bern, C., Chagas disease (2015) N Engl J Med, 373, pp. 456-666
  • Brener, Z., Biology of Trypanosoma cruzi (1973) Annu Rev Microbiol, 27, pp. 347-382
  • Bustamante, J.M., Tarleton, R.L., Potential new clinical therapies for Chagas disease (2014) Expert Rev Clin Pharmacol, 7, pp. 317-325
  • Urbina, J.A., Docampo, R., Specific chemotherapy of Chagas disease: controversies and advances (2003) Trends Parasitol, 19, pp. 495-501
  • Pinto Dias, J.C., Rodrigues Coura, J., Shikanai Yasuda, M.A., The present situation, challenges, and perspectives regarding the production and utilization of effective drugs against human Chagas disease (2014) Rev Soc Bras Med Trop, 47, pp. 123-125
  • Hotez, P.J., Dumonteil, E., Cravioto, M.B., An unfolding tragedy of Chagas disease in North America (2013) PLoS Negl Trop Dis, 7, p. e2300
  • Ravaschino, E.L., Docampo, R., Rodriguez, J.B., Design, synthesis and biological evaluation of phosphinopeptides against Trypanosoma cruzi targeting trypanothione biosynthesis (2006) J Med Chem, 49, pp. 426-435
  • Docampo, R., Sensitivity of parasites to free radical damage by antiparasitic drugs (1990) Chem Biol Interact, 73, pp. 1-27
  • Urbina, J.A., Chemotherapy of Chagas disease (2002) Curr Pharm Des, 8, pp. 287-295
  • de Castro, S.L., Batista, D.G., Batista, M.M., Experimental chemotherapy for Chagas disease: a morphological, biochemical, and proteomic overview of potential Trypanosoma cruzi targets of amidines derivatives and naphthoquinones (2011) Mol Biol Int, 2011, p. 306928
  • Docampo, R., Moreno, S.N.J., Biochemical toxicology of antiparasitic compounds used in the chemotherapy and chemoprophylaxis of American trypanosomiaisis (Chagas’ disease) (1985) Rev Biochem Toxicol, 7, pp. 159-204
  • Buckner, F.S., Urbina, J.A., Recent developments in sterol 14-demethylase inhibitors for Chagas disease (2012) Int J Parasitol Drugs Drug Resist, 2, pp. 236-242
  • Lepesheva, G.I., Hargrove, T.Y., Anderson, S., Structural insights into inhibition of sterol 14α-demethylase in the human pathogen Trypanosoma cruzi (2010) J Biol Chem, 285, pp. 25582-25590
  • Lepesheva, G.I., Villalta, F., Waterman, M.R., Targeting Trypanosoma cruzi sterol 14α-demethylase (CYP51) (2011) Adv Parasitol, 75, pp. 65-87
  • Docampo, R., Moreno, S.N., The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites (2008) Curr Pharm Des, 14, pp. 882-888
  • Docampo, R., Moreno, S.N.J., Acidocalcisomes (2011) Cell Calcium, 50, pp. 113-119
  • Krauth-Siegel, R.L., Comini, M.A., Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism (2008) Biochimica Biophysica Acta, 1780, pp. 1236-1248
  • Cazzulo, J.J., Proteinases of Trypanosoma cruzi: potential targets for the chemotherapy of Chagas disease (2002) Curr Top Med Chem, 2, pp. 1261-1271
  • Alvarez, V.E., Niemirowicz, G.T., Cazzulo, J.J., Metacaspases, autophagins and metallocarboxypeptidases: potential new targets for chemotherapy of the trypanosomiases (2013) Curr Med Chem, 20, pp. 3069-3077
  • Matsui, M., Jh, F., Walling, L.L., Leucine aminopeptidases: diversity in structure and function (2006) Biol Chem, 387, pp. 1535-1544
  • Yokoyama, K., Gillespie, J.R., Van Voorhis, W.C., Protein geranylgeranyltransferase-I of Trypanosoma cruzi (2008) Mol Biochem Parasitol, 157, pp. 32-43
  • Urbina, J.A., New insights in Chagas’ disease treatment (2010) Drugs Future, 35, pp. 409-419
  • González, M., Cerecetto, H., Quinoxaline derivatives: a patent review (2006-present) (2012) Expert Opin Ther Pat, 22, pp. 1289-1302
  • Duschak, V.G., Couto, A.S., Targets and patented drugs for chemotherapy of Chagas disease (2010) Front Anti-Infective Drug Discov, 1, pp. 323-408
  • Paes, L.S., Mantilla, B.S., Barison, M.J., The uniqueness of the Trypanosoma cruzi mitochondrion: opportunities to target new drugs against Chagas disease (2011) Curr Pharm Des, 17, pp. 2074-2099
  • Croft, S.L., RSC drug discovery series, neglected diseases and drug discovery (2012) Drugs Kinetoplastid Diseases – Current Situation Challenges, 14, pp. 134-158
  • Jacobs, R.T., RSC drug discovery series, neglected diseases and drug discovery (2012) Drugs Kinetoplastid Dis, 14, pp. 159-202
  • Urbina, J.A., Parasitological cure of Chagas disease: is it possible? Is it relevant? (1999) Mem Inst Oswaldo Cruz, 94, pp. 349-355
  • Docampo, R., Moreno, S.N.J., The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites (2008) Curr Pharm Des, 14, pp. 882-888
  • Gelb, M.H., Van Voorhis, W.C., Buckner, F.S., Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics (2003) Mol Biochem Parasitol, 726, pp. 155-163
  • Lepesheva, G.I., Zaitseva, N.G., Nes, W.D., CPY51 from Trypanosoma cruzi: a phyla-specific residue in the B′ helix defines substrates preferences (2006) J Biol Chem, 281, pp. 3577-3585
  • Urbina, J.A., Vivas, J., Lazardi, K., Antiproliferative effects of Δ24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies (1996) Chemotherapy, 42, pp. 294-307
  • Parish, E.J., Nes, W.D., Synthesis of new epiminoisopentenoids (1988) Synth Commun, 18, pp. 221-226
  • Vivas, J., Urbina, J.A., de Souza, W., Ultrastructural alterations in Trypanosoma (Schizotrypanum) cruzi induced by Δ24(25) sterol methyl transferase inhibitors and their combinations with ketoconazole (1997) Int J Antimicrob Agents, 8, pp. 1-6
  • Urbina, J.A., Payares, G., Molina, J., Cure of short- and long-term experimental Chagas’ disease using D0870 (1996) Science, 273, pp. 969-971
  • Brener, Z., Cançado, J.R., Galvao, L.M., An experimental and clinical assay with ketoconazole in the treatment of Chagas disease (1993) Mem Inst Oswaldo Cruz, 88, pp. 149-153
  • Heeres, J., Backx, L.J.J., Mostmans, J.H., Antimycotic imidazoles. Part 4. Synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent (1979) J Med Chem, 22, pp. 1003-1005
  • Ryley, J.F., McGregor, S., Wilson, R.G., Activity of ICI 195,739, a novel, orally active bistriazole in rodent models of fungal and protozoal infections (1988) Ann N Y Acad Sci, 544, pp. 310-328
  • Pfaller, M.A., Messer, S., Jones, R.N., Activity of a New Triazole, Sch 56592, Compared with those of four other antifungal agents tested against clinical isolates of Candida spp. and Saccharomyces cerevisiae (1997) Antimicrob Agents Chemother, 41, pp. 233-235
  • Urbina, J.A., Payares, G., Contreras, L.M., Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies (1998) Antimicrob Agents Chemother, 42, pp. 1771-1777
  • Urbina, J.A., Payares, G., Sanoja, C., In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease (2003) Int J Antimicrob Agents, 21, pp. 27-38
  • Lepesheva, G.I., Design or screening of drugs for the treatment of Chagas disease: what shows the most promise? (2013) Expert Opin Drug Discov, 8, pp. 1479-1489
  • Ueda, Y., Matiskella, J.D., Golik, J., Phosphonooxymethyl prodrugs of the broad spectrum antifungal azole, ravuconazole: synthesis and biological properties (2003) Bioorg Med Chem Lett, 13, pp. 3669-3672
  • Ahmed, S.A., Kloezen, W., Duncanson, F., Madurella mycetomatis is highly susceptible to ravuconazole (2014) PLoS Negl Trop Dis, 8, p. e2942
  • Ueki, Y., (2013) Encapsulated formulation of ravuconazole methyl phosphate
  • Urbina, J.A., Payares, G., Sanoja, C., Parasitological cure of acute and chronic experimental Chagas disease using the long-acting experimental triazole TAK-187. Activity against drug-resistant Trypanosoma cruzi strains (2003) Int J Antimicrob Agents, 21, pp. 39-48
  • Suryadevara, P.K., Olepu, S., Lockman, J.W., Structurally simple inhibitors of lanosterol 14α-demethylase are efficacious in a rodent model of acute Chagas disease (2009) J Med Chem, 52, pp. 3703-3715
  • Suryadevara, P.K., Racherla, K.K., Olepu, S., Dialkylimidazole inhibitors of Trypanosoma cruzi sterol 14α-demethylase as anti-Chagas disease agents (2013) Bioorg Med Chem Lett, 23, pp. 6492-6499
  • Kraus, J.M., Tatipaka, H.B., McGuffin, S.A., Second generation analogues of the cancer drug clinical candidate tipifarnib for anti-Chagas disease drug discovery (2010) J Med Chem, 53, pp. 3887-3898
  • Buckner, F.S., Bahia, M.T., Suryadevara, P.K., Pharmacological characterization, structural studies, and in vivo activities of anti-Chagas disease lead compounds derived from tipifarnib (2012) Antimicrob Agents Chemother, 56, pp. 4914-4921
  • Lepesheva, G.I., Ott, R.D., Hargrove, T.Y., Sterol 14 α-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth (2007) Chem Biol, 14, pp. 1283-1293
  • Villalta, F., Dobish, M.C., Nde, P.N., VNI cures acute and chronic experimental Chagas disease (2013) J Infect Dis, 208, pp. 504-511
  • Friggeri, L., Hargrove, T.Y., Rachakonda, G., Structural basis for rational design of inhibitors targeting Trypanosoma cruzi sterol 14α-demethylase: two regions of the enzyme molecule potentiate its inhibition (2014) J Med Chem, 57, pp. 6704-6717
  • Clayton, J., Chagas disease: pushing through the pipeline (2010) Nature, 465, pp. S12-S15
  • Urbina, J.A., Lazardi, K., Aguirre, T., Antiproliferative effects and mechanism of action of ICI 195,739, a novel bis-triazole derivative, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi (1991) Antimicrob Agents Chemother, 35, pp. 730-735
  • Gokhale, V.M., Kulkarni, V.M., Understanding the antifungal activity of terbinafine analogues using quantitative structure-activity relationship (QSAR) models (2000) Bioorg Med Chem, 8, pp. 2487-2499
  • Gerpe, A., Odreman-Nuñez, I., Draper, P., Heteroallyl-containing 5-nitrofuranes as new anti-Trypanosoma cruzi agents with a dual mechanism of action (2008) Bioorg Med Chem, 16, pp. 569-577
  • Urbina, J.A., Concepción, J.L., Rancel, S., Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana (2002) Mol Biochem Parasitol, 125, pp. 35-45
  • Pandit, J., Danley, D.E., Schulte, G.K., Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis (2000) J Biol Chem, 275, pp. 30610-30617
  • Brown, G.R., Clarke, D.S., Foubister, A.J., (1996) J Med Chem, 39, pp. 2971-2979
  • Cinque, G.M., Szajnman, S.H., Zhong, L., Structure-activity relationship of new growth inhibitors of Trypanosoma cruzi (1998) J Med Chem, 41, pp. 1540-1554
  • Urbina, J.A., Concepcion, J.L., Montalvetti, A., Mechanism of action of 4-phenoxyphenoxy derivatives against Trypanosoma cruzi, the causative agent of Chagas disease (2003) Antimicrob Agents Chemother, 47, pp. 2047-2050
  • García Liñares, G., Gismondi, S., Osa Codesido, N., Fluorine-containing aryloxyethyl thiocyanate derivatives are potent inhibitors of Trypanosoma cruzi and Toxoplasma gondii proliferation (2007) Bioorg Med Chem Lett, 17, pp. 5068-5071
  • Chao, M.N., Exeni Matiuzzi, C., Storey, M., Aryloxyethyl thiocyanates are potent growth inhibitors of Trypanosoma cruzi and Toxoplasma gondii (2015) ChemMedChem, 10, pp. 1094-1108
  • Lin, F.–.Y., Liu, Y.–.L., Li, K., Head-to-head prenyl tranferases: anti-infective drug targets (2012) J Med Chem, 55, pp. 4367-4372
  • Shang, N., Li, Q., Ko, T.P., Squalene synthase as a target for Chagas disease therapeutics (2014) PLoS Pathog, 10, p. e1004114
  • Kramer, S.J., Law, J.H., Synthesis and transport of juvenile hormones in insects (1980) Acc Chem Res, 13, pp. 297-303
  • Perlawagora-Szumlewicz, A., Petana, W.P., Figueiredo, M.J., The evaluation of host efficiency and vector potential of laboratory juvenilized vector of Chagas’ disease. I – Effects of developmental changes induced by juvenile hormone analogues in Pantrongylus megistus (Hemiptera-Reduviidae) on the susceptibility of insects to gut infection with Trypanosoma cruzi (1975) Rev Inst Med Trop, 17, pp. 97-102
  • Rodriguez, J.B., Zhong, L., Docampo, R., Growth inhibitory effect of juvenile hormone analogues on epimastigotes of Trypanosoma cruzi (1998) Bioorg Med Chem Lett, 8, pp. 3257-3260
  • Schvartzapel, A.J., Zhong, L., Docampo, R., Design, synthesis and biological evaluation of new growth inhibitors of Trypanosoma cruzi (epimastigotes) (1997) J Med Chem, 40, pp. 2314-2322
  • Urbina, J.A., Concepcion, J.L., Caldera, A., In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi (2004) Antimicrob Agents Chemother, 48, pp. 2379-2387
  • Sacksteder, K.A., Protopopova, M., Barry, C.E., III, Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action (2012) Future Microbiol, 7, pp. 823-837
  • Zumla, A., Nahid, P., Cole, S.T., Advances in the development of new tuberculosis drugs and treatment regimens (2013) Nat Rev Drug Discov, 12, pp. 388-404
  • Li, K., Schurig-Briccio, L.A., Feng, X., Multitarget drug discovery for tuberculosis and other infectious diseases (2014) J Med Chem, 57, pp. 3126-3139
  • Veiga-Santos, P., Li, K., Lameira, L., SQ109, a new drug lead for Chagas disease (2015) Antimicrob Agents Chemother, 59, pp. 1950-1961
  • Oldfield, E., Li, K., (2015) Anti-microbial compounds and compositions
  • Florin-Christensen, M., Florin-Christensen, J., Garin, C., Inhibition of Trypanosoma cruzi growth and sterol biosynthesis by lovastatin (1990) Biochem Biophys Res Comm, 166, pp. 1441-1445
  • Concepción, J.L., González-Pacanowska, D., Urbina, J.A., 3-Hydroxy-3-methyl-glutaryl-CoA reductase in Trypanosoma (Schizotrypanum) cruzi: subcellular localization and kinetic properties (1998) Arch Biochem Biophys, 352, pp. 114-120
  • Urbina, J.A., Lazardi, K., Marchan, E., Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies (1993) Antimicrob Agents Chemother, 37, pp. 580-591
  • Goad, L.J., Berens, R.L., Marr, J.J., The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro (1989) Mol Biochem Parasitol, 32, pp. 179-189
  • Montalvetti, A., Bailey, B.N., Martin, M.B., Bisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase (2001) J Biol Chem, 276, pp. 33930-33937
  • Rodriguez, J.B., Falcone, B.N., Szajnman, S.H., Approaches for designing new potent inhibitors of farnesyl pyrophosphate synthase (2016) Expert Op Drug Discovery, 11, pp. 307-320
  • Roelofs, A.J., Thompson, K., Ebetino, F.H., Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages (2010) Curr Pharm Des, 16, pp. 2950-2960
  • Russell, R.G.G., Bisphosphonates: the first 40 years (2011) Bone, 49, pp. 2-19
  • Martin, M.B., Grimley, J.S., Lewis, J.C., Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy (2001) J Med Chem, 44, pp. 909-916
  • Bouzahzah, B., Jelicks, L.A., Morris, S.A., Risedronate in the treatment of murine Chagas’ disease (2005) Parasitol Res, 96, pp. 184-187
  • Rosso, V.S., Szajnman, S.H., Malayil, L., Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase (2011) Bioorg Med Chem, 19, pp. 2211-2217
  • Szajnman, S.H., García Liñares, G.E., Li, Z.-H., Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase (2008) Bioorg Med Chem, 16, pp. 3283-3290
  • Aripirala, S., Szajnman, S.H., Jakoncic, J., Design, synthesis, calorimetry and crystallographic analysis of 2-alkylaminoethyl-1,1-bisphosphonates as inhibitors of Trypanosoma cruzi farnesyl diphosphate synthase (2012) J Med Chem, 55, pp. 6445-6454
  • Ferrer-Casal, M., Li, C., Galizzi, M., New insights into molecular recognition of 1,1-bisphosphonic acids by farnesyl diphosphate synthase (2014) Bioorg Med Chem, 22, pp. 398-405
  • Szajnman, S.H., Bailey, B.N., Docampo, R., Bisphosphonates derived from fatty acids are potent growth inhibitors of Trypanosoma cruzi (2001) Bioorg Med Chem Lett, 11, pp. 789-792
  • Szajnman, S.H., Montalvetti, A., Wang, Y., Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase (2003) Bioorg Med Chem Lett, 13, pp. 3231-3235
  • Szajnman, S.H., Ravaschino, E.L., Docampo, R., Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase (2005) Bioorg Med Chem Lett, 15, pp. 4685-4690
  • Szajnman, S.H., Rosso, V.S., Malayil, L., Design, synthesis and biological evaluation of 1-(fluoroalkylidene)-1,1-bisphosphonic acids against Toxoplasma gondii targeting farnesyl diphosphate synthase (2012) Org Biomol Chem, 10, pp. 1424-1433
  • Recher, M., Barboza, A.P., Li, Z.-H., Design, synthesis and biological evaluation of sulfur-containing 1,1-bisphosphonic acids as antiparasitic agents (2013) Eur J Med Chem, 60, pp. 431-440
  • Oldfield, E., Zhang, Y., Yin, F., (2011) Bisphosphonate compounds and methods with enhanced potency for multiple targets including FPPS, GGPPS, and DPPS
  • Duschak, V.G., A decade of targets and patented drugs for chemotherapy of Chagas disease (2011) Recent Pat Antiinfect Drug Discov, 6, pp. 216-259
  • Mott, B.T., Ferreira, R.S., Simeonov, A., Identification and optimization of inhibitors of trypanosomal cysteine proteases: cruzain, rhodesain, and TbCatB (2010) J Med Chem, 53, pp. 52-60
  • Chen, Y.T., Brinen, L.S., Kerr, I.D., In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi (2010) PLoS Negl Trop Dis, 4, p. e825
  • Bourguignon, S.C., Cavalcanti, D.F.B., de Souza, A.M.T., Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity (2011) Exp Parasitol, 127, pp. 160-166
  • Ferreira, R.S., Dessoy, M.A., Pauli, I., Synthesis, biological evaluation, and structure−activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents (2014) J Med Chem, 57, pp. 2380-2392
  • Brak, K., Doyle, P.S., McKerrow, J.H., Identification of a new class of nonpeptidic inhibitors of cruzain (2008) J Am Chem Soc, 130, pp. 6404-6410
  • Paez Prosper, J.A., Campillo Martin, N.E., Guerra Alvarez, A., (2011) Preparation of 2,2-dioxidoimidazo[4,5-c][1,2,6]thiadiazine derivatives as inhibitors of cruzain and their use in the treatment of Chagas disease
  • Beaulieu, C., Isabel, E., Fortier, A., Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease (2010) Bioorg Med Chem Lett, 20, pp. 7444-7449
  • Black, W.C., Bayly, C.I., Davis, D.E., Trifluoroethylamines as amide isosteres in inhibitors of cathepsin K (2005) Bioorg Med Chem Lett, 15, pp. 4741-4744
  • Ndao, M., Beaulieu, C., Black, W.C., Reversible cysteine protease inhibitors show promise for a Chagas disease cure (2014) Antimicrob Agents Chemother, 58, pp. 1167-1178
  • Black, W.C., Beaulieu, C., (2010) Cathepsin cysteine protease inhibitors for the treatment of various diseases
  • Lima, L.M., Barreiro, E.J.L., Alves, M.A., (2014) Hidrazide-N-acylhydrazone compounds, methos for producing hidrazide-N-acylhydrazone compounds, use of intermediates for producing hidrazide-N-acylhydrazones for the treatment of leishmaniasis and Chagas disease, and thus obtained pharmaceutical compositions
  • Alves, M.A., de Queiroz, A.C., Alexandre-Moreira, M.S., Design, synthesis and in vitro trypanocidal and leishmanicidal activities of novel semicarbazone derivatives (2015) Eur J Med Chem, 100, pp. 24-33
  • Manta, B., Comini, M., Medeiros, A., Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids (2013) Bioch Biophys Acta, 1830, pp. 3199-3216
  • Shames, S.L., Fairlamb, A.H., Cerami, A., Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases (1986) Biochemistry, 25, pp. 3519-3526
  • Fairlamb, A.H., Metabolism and functions of trypanothione in the Kinetoplastida (1992) Annu Rev Microbiol, 46, pp. 695-729
  • Oza, S.L., Tetaud, E., Ariyanayagam, M.R., A single enzyme catalyses formation of trypanothione from glutathione and spermidine in Trypanosoma cruzi (2002) J Biol Chem, 39, pp. 35853-35861
  • Krauth-Siegel, R.L., Bauer, H., Schirmer, R.H., Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia (2005) Angew Chem Int Ed, 44, pp. 690-715
  • Salmon-Chemin, L., Buisine, E., Yardley, V., 2- and 3-Substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity (2001) J Med Chem, 44, pp. 548-565
  • Bolognesi, M.L., Lizzi, F., Perozzo, R., Synthesis of a small library of 2-phenoxy-1,4-naphtoquinone and 2-phenoxy-1,4-anthraquinone derivatives bearing anti-trypanosomal and anti-leishmanial activity (2008) Bioorg Med Chem Lett, 18, pp. 2272-2276
  • Lizzi, F., Veronesi, G., Belluti, F., Conjugation of quinones with natural polyamines: toward an expanded antitrypanosomatid profile (2012) J Med Chem, 55, pp. 10490-10500
  • Hiratake, J., Kato, H., Oda, J., Mechanism-based inactivation of glutathione synthetase by phosphinic acid transition-state analog (1994) J Am Chem Soc, 116, pp. 12059-12060
  • Chen, S., Coward, J.K., Investigations on new strategies for the facile synthesis of polyfunctionalized phosphinates: phosphinopeptide analogues of glutathionylspermidine (1998) J Org Chem, 63, pp. 502-509
  • Vicente, E., Duchowicz, P.R., Benítez, D., Anti-T. cruzi activities and QSAR studies of 3-arylquinoxaline-2-carbonitrile di-N-oxides (2010) Bioorg Med Chem Lett, 20, pp. 4831-4835
  • Benitez, D., Cabrera, M., Hernández, P., 3-Trifluoromethylquinoxaline N, N′-dioxides as anti-trypanosomatid agents. Identification of optimal anti-T. cruzi agents and mechanism of action studies (2011) J Med Chem, 54, pp. 3624-3636
  • Monge, A., Pérez, S., Aldana, I., Quinoxaline derivatives as selective agents against Trypanosoma cruzi without causing mutagenic effects (2012) PCT Int Appl
  • Abreu, I.A., Cabelli, D.E., Superoxide dismutases-a review of the metal-associated mechanistic variations (2010) Biochim Biophys Acta, 1804, pp. 263-274
  • Olmo, F., Clares, M.P., Marin, C., Synthetic single and double aza-scorpiand macrocycles acting as inhibitors of the antioxidant enzymes iron superoxide dismutase and trypanothione reductase in Trypanosoma cruzi with promising results in a murine model (2014) RSC Advances, 4, pp. 65108-65120
  • Inclán, M., Teresa Albelda, M.T., Frías, J.C., Modulation of DNA binding by reversible metal-controlled molecular reorganizations of scorpiand-like ligands (2012) J Am Chem Soc, 134, pp. 9644-9656
  • Garcia-Espana Monsonis, E., Clares García, M.P., Blasco Llopis, S., (2013) Synthesis of scorpion-tail-like macrocycles useful as antiparasitic agents treating Trypanosoma cruzi or Leishmaniaspp. parasitic infestations
  • Olmo, F., Gómez-Contreras, F., Navarro, P., Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative (2015) Eur J Med Chem, 106, pp. 106-119
  • Olmo, F., Rotger, C., Ramírez-Macías, I., Synthesis and biological evaluation of N, N′-squaramides with high in vivo efficacy and low toxicity: toward a low-cost drug against Chagas disease (2014) J Med Chem, 57, pp. 987-999
  • Rotger Pons, M.C., Costa Torres, A., Sánchez Moreno, M., (2014) Antiparasitic activity of squaramide
  • Dandapani, S., Germain, A.R., Jewett, I., Diversity-oriented synthesis yields a new drug lead for treatment of Chagas disease (2014) ACS Med Chem Lett, 5, pp. 149-153
  • Munoz, B., Dandapani, S., Jewett, I.T., (2014) Small molecule inhibitors for treating parasitic infections
  • de Oliveira, A.B., Saúde, D.A., Perry, K.S.P., Trypanocidal sesquiterpenes from Lychnophora species (1996) Phytother Res, 10, pp. 292-295
  • Branquinho, R.T., Mosqueira, V.C.F., de Oliveira-Silva, J.C.V., Sesquiterpene lactone in nanostructured parenteral dosage form is efficacious in experimental Chagas disease (2014) Antimicrob Agents Chemother, 58, pp. 2067-2075
  • Mosqueira, V.C.F., Lana, M., Guimarães, D.A.S., (2013) Pharmaceutical compositions containing sesquiterpene lactones belonging to the class of furan heliangolides for the treatment of parasitic infections and tumours
  • Romero, E.L., Morilla, M.J., Nanotechnological approaches against Chagas disease (2010) Adv Drug Deliv Rev, 62, pp. 576-588
  • Engelman, J.A., Luo, J., Cantley, L.C., The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism (2006) Nat Rev Genet, 7, pp. 606-619
  • Merritt, C., Silva, L.E., Tanner, A.L., Kinases as druggable targets in trypanosomatid protozoan parasites (2014) Chem Rev, 114, pp. 1280-1304
  • Ballou, L.M., Lin, R.Z., Rapamycin and mTOR kinase inhibitors (2008) J Chem Biol, 1, pp. 27-36
  • Barquilla, A., Saldivia, M., Díaz, R., Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei (2012) Proc Natl Acad Sci USA, 109, pp. 14399-14404
  • de Jesus, T.C., Tonelli, R.R., Nardelli, S.C., Target of rapamycin (TOR)-like 1 kinase is involved in the control of polyphosphate levels and acidocalcisome maintenance in Trypanosoma brucei (2010) J Biol Chem, 285, pp. 24131-24140
  • Díaz-González, R., Kuhlmann, F.M., Galán-Rodríguez, C., The susceptibility of trypanosomatid pathogens to PI3/mTOR kinase inhibitors affords a new opportunity for drug repurposing (2011) PLoS Negl Trop Dis, 5, p. e1297
  • Zask, A., Verheijen, J.C., Richard, D.J., Recent advances in the discovery of small-​molecule ATP competitive mTOR inhibitors: a patent review (2011) Expert Opinion Ther Patents, 21, pp. 1109-1127
  • Pollastri, M.P., Navarro, M., Beverley, S., (2012) Antiparasitic agents based on mTOR inhibitors
  • Pollastri, M.P., Campbell, R.K., Target repurposing for neglected diseases (2011) Future Med Chem, 3, pp. 1307-1315
  • Patel, G., Karver, C.E., Behera, R., Kinase scaffold repurposing for neglected disease drug discovery: discovery of an efficacious, lapatanib-derived lead compound for trypanosomiasis (2013) J Med Chem, 56, pp. 3820-3832
  • Devine, W., Woodring, J.L., Swaminathan, U., Protozoan parasite growth inhibitors discovered by cross-screening yield potent scaffolds for lead discovery (2015) J Med Chem, 58, pp. 5522-5537
  • Pollastri, M.P., Mehta, N., Devine, W., (2015) Preparation of arylaminoheteroaryls as protozoan parasite growth inhibitors
  • Cooke, N.G., (2013) Fernandes Gomes dos Santos PA, Furet P, et al. Use of the inhibitors of the activity or function of PI3K
  • Salas, C., Tapia, R.A., Ciudad, K., Trypanosoma cruzi: activities of lapachol and α and ß-lapachone derivatives against epimastigote and trypomastigote forms (2008) Bioorg Med Chem, 16, pp. 668-674
  • Khraiwesh, M.H., Lee, C.M., Brandy, Y., Antitrypanosomal activities and cytotoxicity of some novel imidosubstituted 1,4-naphthoquinone derivatives (2012) Arch Pharm Res, 35, pp. 27-33
  • Brandy, Y., Brandy, N., Akinboye, E., Synthesis and characterization of novel unsymmetrical and symmetrical 3-halo- or 3-methoxy-substituted 2-dibenzoylamino-1,4-naphthoquinone derivatives (2013) Molecules, 18, pp. 1973-1984
  • Bakare, O., Lee, C.M., Brandy, Y., Method for inhibiting Trypanosoma cruzi (2013) WO 2013016661 A1
  • Frasch, A.C., Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi (2000) Parasitol Today, 16, pp. 282-286
  • Buscaglia, C.A., Campo, V.A., Frasch, A.C.C., Trypanosoma cruzi surface mucins: host-dependent coat diversity (2006) Nat Rev Microbiol, 4, pp. 229-236
  • Buschiazzo, A., Muiá, R., Larrieux, N., Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors (2012) PLoS Pathog, 8, p. e1002474
  • Watts, A.G., Damager, I., Amaya, M.L., Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile (2003) J Am Chem Soc, 125, pp. 7532-7533
  • Buchini, S., Buschiazzo, A., Withers, S.G., A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors (2008) Angew Chem Int Ed Engl, 47, pp. 2700-2703
  • Lieke, T., Gröbe, D., Blanchard, V., Invasion of Trypanosoma cruzi into host cells is impaired by N-propionylmannosamine and other N-acylmannosamines (2011) Glycoconj J, 28, pp. 31-37
  • Jacobs, T., Lieke, T., Reutter, W., Use of hexosamine compounds and their analogs as pharmaceutical product, which inhibits the proliferation of trypanosomes, and thus for the treatment of trypanosome-induced disease (2011) DE 102009053259 A1
  • Jacobs, R.T., Plattner, J.J., Keenan, M., Boron-based drugs as antiprotozoals (2011) Curr Opinion Infect Dis, 24, pp. 586-592
  • Jacobs, R.T., Plattner, J.J., Nare, B., Benzoxaboroles: a new class of potential drugs for human African trypanosomiasis (2011) Future Med Chem, 3, pp. 1259-1278
  • Chen, D., Orr, M., Sligar, J., (2011) Boron-containing small molecules as antiprotozoal agents
  • Tarleton, R.L., Reithinger, R., Urbina, J.A., The challenges of Chagas disease—grim outlook or glimmer of hope (2007) PLoS Med, 4, p. e332
  • Gomes, Y.M., Lorena, V.M.B., Luquetti, A.O., Diagnosis of Chagas disease: what has been achieved? What remains to be done with regard to diagnosis and follow up studies? (2009) Mem Inst Oswaldo Cruz, 104, pp. 115-121
  • Lima, J.A., Szarfman, A., Lima, S.D., Absence of left ventricular dysfunction during acute chagasic myocarditis in the rhesus monkey (1986) Circulation, 73, pp. 172-179
  • Gomes, Y.M., PCR and serodiagnosis in chronic Chagas’ disease: biotechnological advances (1997) Appl Biochem Biotechnol, 66, pp. 107-119
  • Cançado, J.R., Long term evaluation of etiological treatment of Chagas disease with benznidazole (2002) Rev Inst Med Trop Sao Paulo, 44, pp. 29-37
  • Krettli, A.U., Brener, Z., Resistance against Trypanosoma cruzi associated to anti-living trypomastigote antibodies (1982) J Immunol, 28, pp. 2009-2012
  • Afonso, A.M., Ebell, M.H., Tarleton, R.L., A systematic review of high quality diagnostic tests for Chagas disease (2012) PLoS Negl Trop Dis, 6, p. e1881
  • Pinazo, M.J., Thomas, M.C., Bua, J., Biological markers for evaluating therapeutic efficacy in Chagas disease, a systematic review (2014) Expert Rev AntiInfect Ther, 12, pp. 479-496
  • Coronado, X., Zulantay, I., Reyes, E., Comparison of Trypanosoma cruzi detection by PCR in blood and dejections of cursive: triatoma infestans fed on patients with chronic Chagas disease (2006) Acta Trop, 98, pp. 314-317
  • Tarleton, R.L., Etheridge, R.D., Jr., (2012) Diagnostic assay for Trypanosoma cruziinfection
  • Li, X., (2012) Oligonucleotide probe for the detection of Trypanosoma cruzi(Chagas disease) in biological samples
  • Thomas Carazo, M.C., López López, M.C., Maranon Lizana, C., (2012) Method for the differential diagnosis of Chagas disease
  • Carlier, Y., Dumonteil, E., (2011) Methods for detection of Trypanosoma cruziusing loop-mediated isothermal amplication
  • Probst, C., Komorowski, L., (2011) Method for diagnosis of paraneoplastic neurological syndrome by immunoassay detection of autoantibodies against CRMP5 and/or subsequences thereof
  • Bustamante, J.M., Craft, J.M., Crowe, B.D., New, combined, and reduced dosing treatment protocols cure Trypanosoma cruzi infection in mice (2014) J Infect Dis, 209, pp. 150-162

Citas:

---------- APA ----------
Rodriguez, J.B., Falcone, B.N. & Szajnman, S.H. (2016) . Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015). Expert Opinion on Therapeutic Patents, 26(9), 993-1015.
http://dx.doi.org/10.1080/13543776.2016.1209487
---------- CHICAGO ----------
Rodriguez, J.B., Falcone, B.N., Szajnman, S.H. "Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015)" . Expert Opinion on Therapeutic Patents 26, no. 9 (2016) : 993-1015.
http://dx.doi.org/10.1080/13543776.2016.1209487
---------- MLA ----------
Rodriguez, J.B., Falcone, B.N., Szajnman, S.H. "Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015)" . Expert Opinion on Therapeutic Patents, vol. 26, no. 9, 2016, pp. 993-1015.
http://dx.doi.org/10.1080/13543776.2016.1209487
---------- VANCOUVER ----------
Rodriguez, J.B., Falcone, B.N., Szajnman, S.H. Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015). Expert Opin. Ther. Pat. 2016;26(9):993-1015.
http://dx.doi.org/10.1080/13543776.2016.1209487