Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Introduction : Toxoplasma gondii is an opportunistic protozoan parasite responsible for toxoplasmosis. T. gondii is able to infect a wide range of hosts, particularly humans and warm-blooded animals. Toxoplasmosis can be considered as one of the most prevalent parasitic diseases affecting close to one billion people worldwide, but its current chemotherapy is still deficient and is only effective in the acute phase of the disease. Areas covered : This review covers different approaches to toxoplasmosis chemotherapy focused on the metabolic differences between the host and the parasite. Selective action on different targets such as the isoprenoid pathway, dihydrofolate reductase, T. gondii adenosine kinase, different antibacterials, T. gondii histone deacetylase and calcium-dependent protein kinases is discussed. Expert opinion : A new and safe chemotherapy is needed, as T. gondii causes serious morbidity and mortality in pregnant women and immunodeficient patients undergoing chemotherapy. A particular drawback of the available treatments is the lack of efficacy against the tissue cyst of the parasite. During this review a broad scope of several attractive targets for drug design have been presented. In this context, the isoprenoid pathway, dihydrofolate reductase, T. gondii histone deacetylase are promising molecular targets. © 2012 Informa UK, Ltd.

Registro:

Documento: Artículo
Título:New antibacterials for the treatment of toxoplasmosis; A patent review
Autor:Rodriguez, J.B.; Szajnman, S.H.
Filiación:Universidad de Buenos Aires, Química Orgánica and UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Pab 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Palabras clave:Calcium-dependent protein kinases; Dihydrofolate reductase; Farnesyl pyrophosphate synthase; Macrolides; Squalene synthase; T. gondii adenosine kinase; T. gondii histone deacetylase; Toxoplasma gondii; Toxoplasmosis; 1 alkyl bisphosphonate derivative; 1 amino bisphosphonate derivative; 1 hydroxy bisphosphonate derivative; 1h benzo[d]imidazol 2(3h) one; 4 phenoxyphenoxy ethyl thiocyanate; 6 n benzyladenosine; alendronic acid; alpha fluoro 1,1 bisphosphonate derivative; antiinfective agent; apicidin; artemether; artemisin; artemisinin derivative; artemisone; azasterol derivative; azithromycin; bisphosphonic acid derivative; deoxyartemisinin; erythromycin; ibandronic acid; macrolide; n[4 [(2 amino 6 methyl 4 oxo 3,4 dihydrothieno[2,3 d]pyrimidin 5 yl)sulfanyl]benzoyl]glutamicacid; pamidronic acid; piritrexim; pyrimethamine sulfadiazine; risedronic acid; squalene synthase inhibitor; tacrolimus; trimethoprim; unclassified drug; unindexed drug; wc 9; amino acid sequence; antiproliferative activity; brain malaria; cell death; cell invasion; drug mechanism; drug potentiation; drug structure; drug targeting; enzyme inhibition; life cycle; nonhuman; nucleic acid synthesis; osteoporosis; review; Toxoplasma gondii; toxoplasmosis; Animals; Antiprotozoal Agents; Drug Design; Female; Humans; Immunocompromised Host; Molecular Targeted Therapy; Patents as Topic; Pregnancy; Toxoplasma; Toxoplasmosis; Toxoplasmosis, Animal
Año:2012
Volumen:22
Número:3
Página de inicio:311
Página de fin:333
DOI: http://dx.doi.org/10.1517/13543776.2012.668886
Título revista:Expert Opinion on Therapeutic Patents
Título revista abreviado:Expert Opin. Ther. Pat.
ISSN:13543776
CODEN:EOTPE
CAS:6 n benzyladenosine, 4294-16-0; alendronic acid, 66376-36-1; artemether, 71963-77-4; artemisin, 481-05-0; artemisone, 255730-18-8; azithromycin, 83905-01-5; deoxyartemisinin, 72826-63-2; erythromycin, 114-07-8, 70536-18-4; ibandronic acid, 114084-78-5, 138844-81-2, 138926-19-9; pamidronic acid, 40391-99-9, 57248-88-1; piritrexim, 72732-56-0; risedronic acid, 105462-24-6, 122458-82-6; tacrolimus, 104987-11-3; trimethoprim, 738-70-5; Antiprotozoal Agents
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13543776_v22_n3_p311_Rodriguez

Referencias:

  • Luder, C.G.K., Bohne, W., Soldati, D., Toxoplasmosis: A persisting challenge (2001) Trends in Parasitology, 17 (10), pp. 460-463. , DOI 10.1016/S1471-4922(01)02093-1, PII S1471492201020931
  • Innes, E.A., A brief history and overview of toxoplasma gondii (2010) Zoonoses Public Health, 57, pp. 1-7
  • Frenkel, J.K., Remington, J.S., Wong, S.-Y., Prevention of toxoplasma infection in pregnant women and their fetuses (1995) Clin. Infect. Dis., 20, pp. 727-729
  • Tenter, A.M., Heckerost, A.R., Weiss, L.M., Toxoplasma gondii: From animals to humans (2000) Int. J. Parasitol., 30, pp. 1217-1258
  • Moreno, S.N.J., Li, Z.-H., Targeting the isoprenoid pathway of Toxoplasma gondii (2008) Expert Opinion on Therapeutic Targets, 12 (3), pp. 253-263. , DOI 10.1517/14728222.12.3.253
  • Glatt, A.E., Chirgwin, K., Landesman, S.H., Treatment of infections associated with human immunodeficiency virus (1988) N. Engl. J. Med., 318, pp. 1439-1448
  • Yolken, R.H., Bachmann, S., Rouslanova, I., Lillehoj, E., Ford, G., Torrey, E.F., Schroeder, J., Antibodies to Toxoplasma gondii in individuals with first-episode schizophrenia (2001) Clinical Infectious Diseases, 32 (5), pp. 842-844. , DOI 10.1086/319221
  • Nicolle, C., Manceaux sur une infection A corps de leishman (ou organism voisin) du gondi (1908) C R Hebd. Seances Acad. Sci., 147, pp. 763-766
  • Levine, N.D., Corliss, J.O., Cox, F.E., A newly revised classification of the protozoa (1980) J. Protozool., 27, pp. 37-58
  • Carruthers, V., Boothroyd, J.C., Pulling together: an integrated model of Toxoplasma cell invasion (2007) Current Opinion in Microbiology, 10 (1), pp. 83-89. , DOI 10.1016/j.mib.2006.06.017, PII S1369527406001007
  • Fichera, M.E., Roos, D.S., A plastid organelle as a drug target in apicomplexan parasites (1997) Nature, 390 (6658), pp. 407-409. , DOI 10.1038/37132
  • Stokkermans, T.J.W., Schwartzman, J.D., Keenan, K., Morrissette, N.S., Tilney, L.G., Roos, D.S., Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides (1996) Experimental Parasitology, 84 (3), pp. 355-370. , DOI 10.1006/expr.1996.0124
  • Roberts, F., Roberts, C.W., Johnson, J.J., Kyle, D.E., Krell, T., Coggins, J.R., Coombs, G.H., McLeod, R., Evidence for the shikimate pathway in apicomplexan parasites (1998) Nature, 393 (6687), pp. 801-805. , DOI 10.1038/31723
  • Dubey, J.P., Lindsay, D.S., Speer, C.A., Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts (1998) Clinical Microbiology Reviews, 11 (2), pp. 267-299
  • Georgiev, V.St., Management of toxoplasmosis (1994) Drugs, 48 (2), pp. 179-188
  • Moreno, S.N.J., Docampo, R., Calcium regulation in protozoan parasites (2003) Current Opinion in Microbiology, 6 (4), pp. 359-364. , DOI 10.1016/S1369-5274(03)00091-2
  • Sabin, A.B., Warren, J., Therapeutic effect of the sulfonamides on the infection with intracellular protozoa (toxoplasma (1941) J. Bacteriol., 41, pp. 80-86
  • Eyles, D.E., Coleman, N., Synergistic effect of sulfadiazine and daraprim against toxoplasmosis in mice (1953) Antibiot. Chemother., 3, pp. 483-490
  • Beverly, J.K.A., A rational approach to the treatment of toxoplasma uveitis (1958) Trans. Ophtalmol. Soc. UK, 78, pp. 109-121
  • Chang, H.R., Pechere, J.-C.F., Effect of roxithromycin or acute toxoplasmosis in mice (1987) Antimicrobial Agents and Chemotherapy, 31 (7), pp. 1147-1149
  • Chang, H.R., Pechere, J.-C.F., In vitro effects of four macrolides (roxithromycin, spiramycin, azithromycin [CP-62,993], and A-56268) on Toxoplasma gondii (1988) Antimicrobial Agents and Chemotherapy, 32 (4), pp. 524-529
  • Garin, J.P., Eyles, D.E., Le traitement de la toxoplasmose experimentale de la souris par la spiramycine (1958) Press. Med., 66, pp. 957-958
  • Desmonts, G., Couvreur, J., Congenital toxoplasmosis a prospective study of 378 pregnancies (1974) N. Engl. J. Med., 290, pp. 1110-1116
  • Baggish, A.L., Hill, D.R., Antiparasitic agent atovaquone (2002) Antimicrobial Agents and Chemotherapy, 46 (5), pp. 1163-1173. , DOI 10.1128/AAC.46.5.1163-1173.2002
  • Sun, I.L., Sun, E.E., Crane, F.L., Requirement for coenzyme Q in plasma membrane electron transport (1992) Proc. Natl. Acad. Sci. USA, 89, pp. 11126-30
  • McFadden, D.C., Tomavo, S., Berry, E.A., Boothroyd, J.C., Characterization of cytochrome b from Toxoplasma gondii and Q(o) domain mutations as a mechanism of atovaquone-resistance (2000) Molecular and Biochemical Parasitology, 108 (1), pp. 1-12. , DOI 10.1016/S0166-6851(00)00184-5, PII S0166685100001845
  • Harris, C., Salgo, M.P., Tanowitz, H.B., Wittner, M., In vitro assessment of antimicrobial agents against Toxoplasma gondii (1988) Journal of Infectious Diseases, 157 (1), pp. 14-22
  • Rytel, M.W., Jones, T.C., Introduction of interferon in mice infected with Toxoplasma gondii (1966) Proc. Soc. Exp. Biol. Med., 123, pp. 859-862
  • Koo, L., Young, L.H., Management of ocular toxoplasmosis (2006) International Ophthalmology Clinics, 46 (2), pp. 183-193. , PII 0000439720060462000015
  • Avery, M.A., Alvim-Gaston, M., Vroman, J.A., Wu, B., Ager, A., Peters, W., Robinson, B.L., Charman, W., Structure-activity relationships of the antimalarial agent artemisinin. 7. Direct modification of (+)-artemisinin and in vivo antimalarial screening of new, potential preclinical antimalarial candidates (2002) Journal of Medicinal Chemistry, 45 (19), pp. 4321-4335. , DOI 10.1021/jm020142z
  • Vroman, J.A., Alvim-Gaston, M., Avery, M.A., Current progress in the chemistry, medicinal chemistry and drug design of artemisinin based antimalarials (1999) Current Pharmaceutical Design, 5 (2), pp. 101-138
  • Ou-Yang, K., Krug, E.C., Marr, J.J., Berens, R.L., Inhibition of growth of Toxoplasma gondii by Qinghaosu and derivatives (1990) Antimicrobial Agents and Chemotherapy, 34 (10), pp. 1961-1965
  • Chang, H.R., Pechere, J.-C., Arteether,a qinghaosu derivative in toxoplasmosis (1988) Trans. R Soc. Trop. Med. Hyg., 82, p. 867
  • Jones-Brando, L., D'Angelo, J., Posner, G.H., Yolken, R., In vitro inhibition of Toxoplasma gondii by four new derivatives of artemisinin (2006) Antimicrobial Agents and Chemotherapy, 50 (12), pp. 4206-4208. , DOI 10.1128/AAC.00793-06
  • D'Angelo, J.G., Bordon, C., Posner, G.H., Artemisinin derivatives inhibit Toxoplasma gondii in vitro at multiple steps in the lytic cycle (2009) J. Antimicrob Chemother, 63, pp. 146-150
  • Brando, L.V., Posner, G.H., D'Angelo, J.G., Artemisinin derivatives (2008) WO2008127381A2
  • Hencken, C.P., Jones-Brando, L., Bordon, C., Thiazole, oxadiazole, and carboxamide derivatives of artemisinin are highly selective and potent inhibitors of Toxoplasma gondii (2010) J. Med. Chem., 53, pp. 3594-601
  • Posner, G.H., Endoperoxidases useful as antiparasitic agents (1998) US5817962
  • Haynes, R.K., Fugmann, B., Stetter, J., Rieckmann, K., Heilmann, H.-D., Chan, H.-W., Cheung, M.-K., Romer, A., Artemisone - A highly active antimalarial drug of the artemisinin class (2006) Angewandte Chemie - International Edition, 45 (13), pp. 2082-2088. , DOI 10.1002/anie.200503071
  • Schmeer, K., Wollborn, U., Antiparasitic artemisinin derivatives (2006) EP1714967A1
  • Posner, G.H., Woodard, L.E., Levine, D.R., Tioxane monomers and dimmers (2010) WO2010135427
  • Woodard, L.E., Chang, W., Chen, X., Malaria-infected mice live until at least day 30 after a new monomeric trioxane combined with mefloquine are administered together in a single low oral dose (2009) J. Med. Chem., 52, pp. 7458-7462
  • Nagamune, K., Beatty, W.L., Sibley, L.D., Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii (2007) Eukaryotic Cell, 6 (11), pp. 2147-2156. , DOI 10.1128/EC.00262-07
  • Nagamune, K., Moreno, S.N.J., Sibley, L.D., Artemisinin-resistant mutants of Toxoplasma gondii have altered calcium homeostasis (2007) Antimicrobial Agents and Chemotherapy, 51 (11), pp. 3816-3823. , DOI 10.1128/AAC.00582-07
  • Kawase, O., Nishikawa, Y., Bannai, H., Zhang, H., Zhang, G., Jin, S., Lee, E.-G., Xuan, X., Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii (2007) Proteomics, 7 (20), pp. 3718-3725. , DOI 10.1002/pmic.200700362
  • O'Neill, P.M., Rawe, S.L., Borstnik, K., Miller, A., Ward, S.A., Bray, P.G., Davies, J., Posner, G.H., Enantiomeric 1,2,4-trioxanes display equivalent in vitro antimalarial activity versus Plasmodium falciparum malaria parasites: Implications for the molecular mechanism of action of the artemisinins (2005) ChemBioChem, 6 (11), pp. 2048-2054. , DOI 10.1002/cbic.200500048
  • O'Neill, P.M., Posner, G.H., A medicinal chemistry perspective on artemisinin and related endoperoxides (2004) Journal of Medicinal Chemistry, 47 (12), pp. 2945-2964. , DOI 10.1021/jm030571c
  • Urbina, J.A., Parasitological Cure of Chagas Disease: Is it Possible? Is it Relevant? (1999) Memorias do Instituto Oswaldo Cruz, 94 (SUPPL. 1), pp. 349-355
  • Docampo, R., Moreno, S.N., Bisphosphonates as chemotherapeutic agents against trypanosomatid and apicomplexan parasites (2001) Curr. Drug Targets Infect. Disord, 1, pp. 51-61
  • Docampo, R., Moreno, S.N.J., The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites (2008) Current Pharmaceutical Design, 14 (9), pp. 882-888. , http://www.ingentaconnect.com/content/ben/cpd/2008/00000014/00000009/ art00007, DOI 10.2174/138161208784041079
  • Gelb, M.H., Van Voorhis, W.C., Buckner, F.S., Yokoyama, K., Eastman, R., Carpenter, E.P., Panethymitaki, C., Smith, D.F., Protein farnesyl and N-myristoyl transferases: Piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics (2003) Molecular and Biochemical Parasitology, 126 (2), pp. 155-163. , DOI 10.1016/S0166-6851(02)00282-7, PII S0166685102002827
  • Eberl, M., Hintz, M., Reichenberg, A., Kollas, A.-K., Wiesner, J., Jomaa, H., Microbial isoprenoid biosynthesis and human γδ T cell activation (2003) FEBS Letters, 544 (1-3), pp. 4-10. , DOI 10.1016/S0014-5793(03)00483-6
  • Garcia Linares, G., Ravaschino, E.L., Rodriguez, J.B., Progresses in the field of drug design to combat tropical protozoan Parasitic diseases (2006) Curr. Med. Chem., 13, pp. 335-360
  • Dantas-Leite, L., Urbina, J.A., De Souza, W., Vommaro, R.C., Selective anti-Toxoplasma gondii activities of azasterols (2004) International Journal of Antimicrobial Agents, 23 (6), pp. 620-626. , DOI 10.1016/j.ijantimicag.2003.11.005, PII S0924857904000457
  • Urbina, J.A., Vivas, J., Lazardi, K., Antiproliferative effects of Delta24(25) sterol methyl transferase inhibitors on trypanosoma (schizotrypanum) cruzi: In vitro and in vivo studies (1996) Chemotherapy, 42, pp. 294-307
  • Rodrigues, J.C.F., Attias, M., Rodriguez, C., Urbina, J.A., De Souza, W., Ultrastructural and biochemical alterations induced by 22,26-azasterol, a Δ 24(25)-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis (2002) Antimicrobial Agents and Chemotherapy, 46 (2), pp. 487-499. , DOI 10.1128/AAC.46.2.487-499.2002
  • Urbina, J.A., Visbal, G., Contreras, L.M., McLaughlin, G., Docampo, R., Inhibitors of Δ(24(25)) sterol methyltransferase block sterol synthesis and cell proliferation in Pneumocystis carinii (1997) Antimicrobial Agents and Chemotherapy, 41 (7), pp. 1428-1432
  • Dantas-Leite, L., Urbina, J.A., Souza, W.D., Vommaro, R.C., Antiproliferative synergism of azasterols and antifolates against Toxoplasma gondii (2005) International Journal of Antimicrobial Agents, 25 (2), pp. 130-135. , DOI 10.1016/j.ijantimicag.2004.08.016, PII S0924857904003887
  • Roelofs, A.J., Thompson, K., Ebetino, F.H., Bisphosphonates: Molecular mechanisms of action and effects on bone cells, monocytes and macrophages (2010) Curr. Pharm. Des., 16, pp. 2950-2960
  • Reszka, A.A., Rodan, G.A., Nitrogen-containing bisphosphonate mechanism of action (2004) Mini. Rev. Med. Chem., 4, pp. 711-717
  • Reszka, A.A., Rodan, G.A., Mechanism of action of bisphosphonates (2003) Curr. Osteoporos. Rep., 1, pp. 45-52
  • Fleisch, H., Russell, R.G.G., Straumann, F., Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis (1966) Nature, 212, pp. 901-903
  • Fleisch, H., Russell, R.G.G., Francis, M.D., Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo (1969) Science, 165, pp. 1262-264
  • Francis, M.D., Russell, R.G.G., Fleisch, H., Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo (1969) Science, 165, pp. 1264-266
  • Urbina, J.A., Moreno, B., Vierkotter, S., Oldfield, E., Payares, G., Sanoja, C., Bailey, B.N., Docampo, R., Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs (1999) Journal of Biological Chemistry, 274 (47), pp. 33609-33615
  • Hughes, D.E., Wright, K.R., Uy, H.L., Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo (1995) J. Bone Miner. Res., 10, pp. 1478-1487
  • Rogers, M.J., Frith, J.C., Luckman, S.P., Coxon, F.P., Benford, H.L., Monkkonen, J., Auriola, S., Russell, R.G.G., Molecular mechanisms of action of bisphosphonates (1999) Bone, 24 (SUPPL.), pp. 73S-79S. , DOI 10.1016/S8756-3282(99)00070-8, PII S8756328299000708
  • KaVanagh, K.L., Guo, K., Dunford, J.E., The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs (2006) Proc. Natl. Acad. Sci., 103, pp. 7829-7834
  • Hosfield, D.J., Zhang, Y., Dougan, D.R., Broun, A., Tari, L.W., Swanson, R.V., Finn, J., Structural Basis for Bisphosphonate-mediated Inhibition of Isoprenoid Biosynthesis (2004) Journal of Biological Chemistry, 279 (10), pp. 8526-8529. , DOI 10.1074/jbc.C300511200
  • Dunford, J.E., Thompson, K., Coxon, F.P., Luckman, S.P., Hahn, F.M., Poulter, C.D., Ebetino, F.H., Rogers, M.J., Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates (2001) Journal of Pharmacology and Experimental Therapeutics, 296 (2), pp. 235-242
  • Coxon, F.P., Thompson, K., Rogers, M.J., Recent advances in understanding the mechanism of action of bisphosphonates (2006) Current Opinion in Pharmacology, 6 (3), pp. 307-312. , DOI 10.1016/j.coph.2006.03.005, PII S1471489206000610, Respiratory/Musculoskeletal
  • Reddy, R., Dietrich, E., Lafontaine, Y., Bisphosphonated benzoxazinorifamycin prodrugs for the prevention and treatment of osteomyelitis (2008) Chem. Med. Chem., 3, pp. 1863-868
  • Clezardin, P., Massaia, M., Nitrogen-containing bisphosphonates and cancer immunotherapy (2010) Curr. Pharm. Des., 16, pp. 3007-3014
  • Miller, K., Erez, R., Segal, E.., Targeting bone metastases with bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate (2009) Angew. Chem. Int. Ed., 48, pp. 2949-2954
  • Coleman, R.E., Risks and benefits of bisphosphonates (2008) British Journal of Cancer, 98 (11), pp. 1736-1740. , DOI 10.1038/sj.bjc.6604382, PII 6604382
  • Roth, A.G., Drescher, D., Yang, Y., Potent and selective inhibition of acid sphingomyelinase by bisphosphonates (2009) Angew. Chem. Int. Ed., 48, pp. 7560-563
  • Ghosh, S., Chan, J.M.W., Lea, C.R., Meints, G.A., Lewis, J.C., Tovian, Z.S., Flessner, R.M., Oldfield, E., Effects of Bisphosphonates on the Growth of Entamoeba histolytica and Plasmodium Species in Vitro and in Vivo (2004) Journal of Medicinal Chemistry, 47 (1), pp. 175-187. , DOI 10.1021/jm030084x
  • Martin, M.B., Grimley, J.S., Lewis, J.C., Heath III, H.T., Bailey, B.N., Kendrick, H., Yardley, V., Oldfield, E., Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A potential route to chemotherapy (2001) Journal of Medicinal Chemistry, 44 (6), pp. 909-916. , DOI 10.1021/jm0002578
  • Yardley, V., Khan, A.A., Martin, M.B., Slifer, T.R., Araujo, F.G., Moreno, S.N.J., Docampo, R., Oldfield, E., In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii (2002) Antimicrobial Agents and Chemotherapy, 46 (3), pp. 929-931. , DOI 10.1128/AAC.46.3.929-931.2002
  • Martin, M.B., Sanders, J.M., Kendrick, H., De Luca-Fradley, K., Lewis, J.C., Grimley, J.S., Van Brussel, E.M., Oldfield, E., Activity of bisphosphonates against Trypanosoma brucei rhodesiense (2002) Journal of Medicinal Chemistry, 45 (14), pp. 2904-2914. , DOI 10.1021/jm0102809
  • Rosso, V.S., Szajnman, S.H., Malayil, L., Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1- bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase (2011) Bioorg. Med. Chem., 19, pp. 2211-2217
  • Szajnman, S.H., Garcia Linares, G.E., Li, Z.-H., Jiang, C., Galizzi, M., Bontempi, E.J., Ferella, M., Rodriguez, J.B., Synthesis and biological evaluation of 2-alkylaminoethyl-1,1- bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase (2008) Bioorganic and Medicinal Chemistry, 16 (6), pp. 3283-3290. , DOI 10.1016/j.bmc.2007.12.010, PII S0968089607010607
  • Szajnman, S.H., Bailey, B.N., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent growth inhibitors of Trypanosoma cruzi (2001) Bioorganic and Medicinal Chemistry Letters, 11 (6), pp. 789-792. , DOI 10.1016/S0960-894X(01)00057-9, PII S0960894X01000579
  • Szajnman, S.H., Montalvetti, A., Wang, Y., Docampo, R., Rodriguez, J.B., Bisphosphonates derived from fatty acids are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase (2003) Bioorganic and Medicinal Chemistry Letters, 13 (19), pp. 3231-3235. , DOI 10.1016/S0960-894X(03)00663-2
  • Szajnman, S.H., Ravaschino, E.L., Docampo, R., Rodriguez, J.B., Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase (2005) Bioorganic and Medicinal Chemistry Letters, 15 (21), pp. 4685-4690. , DOI 10.1016/j.bmcl.2005.07.060, PII S0960894X05009698
  • Ling, Y., Sahota, G., Odeh, S., Chan, J.M.W., Araujo, F.G., Moreno, S.N.J., Oldfield, E., Bisphosphonate inhibitors of Toxoplasma gondi growth: In vitro, QSAR, and in vivo investigations (2005) Journal of Medicinal Chemistry, 48 (9), pp. 3130-3140. , DOI 10.1021/jm040132t
  • Ling, Y., Li, Z.-H., Miranda, K., Oldfield, E., Moreno, S.N.J., The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates (2007) Journal of Biological Chemistry, 282 (42), pp. 30804-30816. , http://www.jbc.org/cgi/reprint/282/42/30804, DOI 10.1074/jbc.M703178200
  • Szajnman, S.H., Rosso, V.S., Malayil, L., Design, synthesis and biological evaluation of 1-(fluoroalkylidene)-1,1- bisphosphonic acids against toxoplasma gondii targeting farnesyl diphosphate synthase (2012) Org. Biomol. Chem., (10), pp. 1424-1433
  • Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J., Multiple sequence alignment with Clustal X (1998) Trends in Biochemical Sciences, 23 (10), pp. 403-405. , DOI 10.1016/S0968-0004(98)01285-7, PII S0968000498012857
  • Cinque, G.M., Szajnman, S.H., Zhong, L., Docampo, R., Schvartzapel, A.J., Rodriguez, J.B., Gros, E.G., Structure-activity relationship of new growth inhibitors of Trypanosoma cruzi (1998) Journal of Medicinal Chemistry, 41 (9), pp. 1540-1554. , DOI 10.1021/jm970860z
  • Szajnman, S.H., Yan, W., Bailey, B.N., Docampo, R., Elhalem, E., Rodriguez, J.B., Design and synthesis of aryloxyethyl thiocyanate derivatives as potent inhibitors of Trypanosoma cruzi proliferation (2000) Journal of Medicinal Chemistry, 43 (9), pp. 1826-1840. , DOI 10.1021/jm9905007
  • Elhalem, E., Bailey, B.N., Docampo, R., Ujvary, I., Szajnman, S.H., Rodriguez, J.B., Design, synthesis, and biological evaluation of aryloxyethyl thiocyanate derivatives against Trypanosoma cruzi (2002) Journal of Medicinal Chemistry, 45 (18), pp. 3984-3999. , DOI 10.1021/jm0201518
  • Urbina, J.A., Concepcion, J.L., Montalvetti, A., Rodriguez, J.B., Docampo, R., Mechanism of action of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the causative agent of Chagas' disease (2003) Antimicrobial Agents and Chemotherapy, 47 (6), pp. 2047-2050. , DOI 10.1128/AAC.47.6.2047-2050.2003
  • Martins-Duarte, E.S., Urbina, J.A., De Souza, W., Vommaro, R.C., Antiproliferative activities of two novel quinuclidine inhibitors against Toxoplasma gondii tachyzoites in vitro (2006) Journal of Antimicrobial Chemotherapy, 58 (1), pp. 59-65. , DOI 10.1093/jac/dkl180
  • Linares, G.G., Gismondi, S., Codesido, N.O., Moreno, S.N.J., Docampo, R., Rodriguez, J.B., Fluorine-containing aryloxyethyl thiocyanate derivatives are potent inhibitors of Trypanosoma cruzi and Toxoplasma gondii proliferation (2007) Bioorganic and Medicinal Chemistry Letters, 17 (18), pp. 5068-5071. , DOI 10.1016/j.bmcl.2007.07.012, PII S0960894X07008141
  • Blaney, J.M., Hansch, C., Silipo, C., Vittoria, A., Structure-activity relationships of dihydrofolate reductase inhibitors (1984) Chemical Reviews, 84 (4), pp. 333-407. , DOI 10.1021/cr00062a002
  • Zuccotto, F., Martin, A.C.R., Laskowski, R.A., Thornton, J.M., Gilbert, I.H., Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania (1998) Journal of Computer-Aided Molecular Design, 12 (3), pp. 241-257
  • Gangjee, A., Lin, X., Queener, S.F., Design, synthesis, and biological evaluation of 2,4-diamino-5-methyl-6- substituted-pyrrolo[2,3-d]pyrimidines as dihydrofolate reductase inhibitors (2004) Journal of Medicinal Chemistry, 47 (14), pp. 3689-3692. , DOI 10.1021/jm0306327
  • Rosowsky, A., Forsch, R.A., 2,4-diamino-5- [5'-substituted-benzyl] pyrimidines and 2,4-diamino-6-[5'-substituted-benzyl] quinazolines (2004) WO2004082613A2
  • Rosowsky, A., Forsch, R.A., Sibley, C.H., Inderlied, C.B., Queener, S.F., New 2,4-Diamino-5-(2′,5′-substituted benzyl)pyrimidines as Potential Drugs against Opportunistic Infections of AIDS and Other Immune Disorders. Synthesis and Species-Dependent Antifolate Activity (2004) Journal of Medicinal Chemistry, 47 (6), pp. 1475-1486. , DOI 10.1021/jm030438k
  • Rosowsky, A., Forsch, R.A., Queener, S.F., Further studies on 2,4-diamino-5-(2′,5′-disubstituted benzyl)pyrimidines as potent and selective inhibitors of dihydrofolate reductases from three major opportunistic pathogens of AIDS (2003) Journal of Medicinal Chemistry, 46 (9), pp. 1726-1736. , DOI 10.1021/jm020466n
  • Chan, D.C.M., Fu, H., Forsch, R.A., Queener, S.F., Rosowsky, A., Design, synthesis, and antifolate activity of new analogues of piritrexim and other diaminopyrimidine dihydrofolate reductase inhibitors with ω-carboxyalkoxy or ω-carboxy-1-alkynyl substitution in the side chain (2005) Journal of Medicinal Chemistry, 48 (13), pp. 4420-4431. , DOI 10.1021/jm0581718
  • Popov, V.M., Yee, W.A., Anderson, A.C., Towards in silico lead optimization: Scores from ensembles of protein/ligand conformations reliably correlate with biological activity (2007) Proteins: Structure, Function and Genetics, 66 (2), pp. 375-387. , DOI 10.1002/prot.21201
  • Anderson, A., Wright, D.L., Pelphrey, P.M., Inhibitors of dihydrofolate reductase with antibacterial antiprotozoal antifungal and anticancer properties (2009) WO2009025919A2
  • Pelphrey, P.M., Popov, V.M., Joska, T.M., Beierlein, J.M., Bolstad, E.S.D., Fillingham, Y.A., Wright, D.L., Anderson, A.C., Highly efficient ligands for dihydrofolate reductase from Cryptosporidium hominis and Toxoplasma gondii inspired by structural analysis (2007) Journal of Medicinal Chemistry, 50 (5), pp. 940-950. , DOI 10.1021/jm061027h
  • Gangjee, A., Qiu, Y., Li, W., Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: Classical and nonclassical 2-amino-4-oxo- 5-arylthio-substituted-6-methylthieno [2,3-d]pyrimidine antifolates (2008) J. Med. Chem., 51, pp. 5789-5797
  • Johnson, E.F., Hinz, W., Atreya, C.E., Mechanistic characterization of Toxoplasma gondii thymidylate synthase (TS-DHFR)-dihydrofolate reductase (2002) J. Biol. Chem., 277, pp. 43126-36
  • Gangjee, A., Li, W., Kisliuk, R.L., Design, syn thesis, and X-ray crystal structure of classical and nonclassical 2-amino-4-oxo-5-substituted-6- ethylthieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agents (2009) J. Med. Chem., (52), pp. 4892-902
  • Gangjee, A., Matherly, L.H., Selective proton coupled folate transporter and folate receptor and garftase inhibitor compounds and methods of using the same (2010) US20100081676A1
  • Gangjee, A., Substituted pyrrolo[2,3-d] pyrimidines for selectively targeting tumor cells with FR type receptors (2011) US7981902 B2
  • Deligny, M., Saidani, N., Bonneau, A.-L., Compounds with antiparasitic activity applications thereof to the treatment of infectious diseases caused by apicomplexans (2008) WO2008146172A2
  • El Kouni, M.H., Adenosine metabolism in toxoplasma gondii: Potential targets for chemotherapy (2007) Curr. Pharm. Des., 13, pp. 581-597
  • Krug, E.C., Marr, J.J., Berens, R.L., Purine metabolism in Toxoplasma gondii (1989) Journal of Biological Chemistry, 264 (18), pp. 10601-10607
  • Schumacher, M.A., Scott, D.M., Mathews, I.I., Crystal structure of Toxoplasma gondii reveals a novel catalytic mechanism and prodrug binding (2000) J. Mol. Biol., 298, pp. 875-893
  • Mathews, I.I., Erion, M.D., Ealick, S.E., Structure of human adenosine kinase at 1.5 A resolution (1998) Biochemistry, 37 (45), pp. 15607-15620. , DOI 10.1021/bi9815445
  • Kim, Y.A., Sharon, A., Chu, C.K., Rais, R.H., Al Safarjalani, O.N., Naguib, F.N.M., Kouni, M.H., Synthesis, biological evaluation and molecular modeling studies of N 6-benzyladenosine analogues as potential anti-toxoplasma agents (2007) Biochemical Pharmacology, 73 (10), pp. 1558-1572. , DOI 10.1016/j.bcp.2007.01.026, PII S0006295207000330
  • Young, A.K., Sharon, A., Chu, C.K., Rais, R.H., Al Safarjalani, O.N., Naguib, F.N.M., El Kouni, M.H., Structure-activity relationships of 7-deaza-6-benzylthioinosine analogues as ligands of Toxoplasma gondii adenosine kinase (2008) Journal of Medicinal Chemistry, 51 (13), pp. 3934-3945. , DOI 10.1021/jm800201s
  • Al Safarjalani, O.N., Rais, R.H., Kim, Y.A., 7-Deaza-6-benzylthioinosine analogues as subversive substrate of Toxoplasma gondii adenosine kinase: Activities and selective toxicities (2008) Biochem. Pharmacol., 76, pp. 958-966
  • Al Safarjalani, O.N., Rais, R.H., Kim, Y.A., Carbocyclic 6-benzylthioinosine analogues as subversive substrates of toxoplasma gondii adenosine kinase: Biological activities and selective toxicities (2010) Biochem. Pharmacol., 80, pp. 955-963
  • Kim, Y.A., Rawal, R.K., Yoo, J., Structure-activity relationships of carbocyclic 6-benzylthioinosine analogues as subversive substrates of toxoplasma gondii adenosine kinase (2010) Bioorg. Med. Chem., 18, pp. 3403-3412
  • El Kouni, M.H., Guarcello, V., Naguib, F.N.M., Treatment of toxoplasmosis (1998) US5773424
  • Fichera, M.E., Roos, D.S., A plastid organelle as a drug target in apicomplexan parasites (1997) Nature, 390 (6658), pp. 407-409. , DOI 10.1038/37132
  • Baird, J.K., Drugs therapy: Effectiveness of antimalarial drugs (2005) N. Engl. J. Med., 352, pp. 1565-1577
  • Pfefferkorn, E.R., Borotz, S.E., Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin (1994) Antimicrobial Agents and Chemotherapy, 38 (1), pp. 31-37
  • Araujo, F.G., Shepard, R.M., Remington, J.S., In vivo activity of the macrolide antibiotics azithromycin, roxithromycin, ans spiramycin against Toxoplasma gondii (1991) Eur. J. Clin. Microbiol., 10, pp. 519-524
  • Lee, Y., Choi, J.Y., Fu, H., Chemistry and biology of macrolide antiparasitic agents (2011) J. Med. Chem., 54, pp. 2792-804
  • Fichera, M.E., Bophale, M.K., Roos, D.S., In vitro assays elucidate peculiar kinetics of clindamycin action against toxoplasma gondii (1995) Antimicrob Agents Chemother, 39, pp. 1530-1537
  • Bell, A., Monaghan, P., Page, A.P., Peptidyl-prolyl cis-trans isomerases (immunophilins) and their roles in parasite biochemistry, host-parasite interaction and antiparasitic drug action (2006) International Journal for Parasitology, 36 (3), pp. 261-276. , DOI 10.1016/j.ijpara.2005.11.003, PII S0020751905003905
  • Adams, B., Musiyenko, A., Kumar, R., Barik, S., A novel class of dual-family immunophilins (2005) Journal of Biological Chemistry, 280 (26), pp. 24308-24314. , DOI 10.1074/jbc.M500990200
  • Remington, J.S., Araujo, F.G., Treatment for toxoplasmosis with a composition comprising a macrolide antibiotic and a spiropiperidyl derivative of rifamycin S (1997) US5648345
  • Darkin-Rattray, S.J., Gurnett, A.M., Myers, R.W., Dulski, P.M., Crumley, T.M., Allocco, J.J., Cannova, C., Schmatz, D.M., Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase (1996) Proceedings of the National Academy of Sciences of the United States of America, 93 (23), pp. 13143-13147. , DOI 10.1073/pnas.93.23.13143
  • Gissot, M., Kelly, K.A., Ajioka, J.W., Epigenomic modifications predict active promoters and gene structure in toxoplasma gondii (2007) PLoS Pathog., 3, pp. e77
  • Saksouk, N., Bhatti, M.M., Kieffer, S., Smith, A.T., Musset, K., Garin, J., SulliVan Jr., W.J., Hakimi, M.-A., Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii (2005) Molecular and Cellular Biology, 25 (23), pp. 10301-10314. , DOI 10.1128/MCB.25.23.10301-10314.2005
  • Singh, S.B., Zink, D.L., Polishook, J.D., Dombrowski, A.W., Darkin-Rattray, S.J., Schmatz, D.M., Goetz, M.A., Apicidins: Novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum (1996) Tetrahedron Letters, 37 (45), pp. 8077-8080. , DOI 10.1016/0040-4039(96)01844-8, PII S0040403996018448
  • Meinke, P.T., Liberator, P., Histone deacetylase: A target for antiproliferative and antiprotozoal agents (2001) Current Medicinal Chemistry, 8 (2), pp. 211-235
  • Singh, S.B., Zink, D.L., Liesch, J.M., Mosley, R.T., Dombrowski, A.W., Bills, G.F., Darkin-Rattray, S.J., Goetz, M.A., Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal α-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities (2002) Journal of Organic Chemistry, 67 (3), pp. 815-825. , DOI 10.1021/jo016088w
  • Singh, S.B., Zink, D.L., Liesch, J.M., Structure, histone deacetylase, and antiprotozoal activities of apicidins B and C, congeners of apicidin with praline and valine substitutions (2011) Org. Lett., 3, pp. 2815-2818
  • Cannova, C.L., Dambrowski, A.W., Goetz, M.A., Antiprotozoal cyclic tetrapeptides (1999) US5861375
  • Meinke, P.T., Schmatz, D., Fisher, M.H., (2001) Apicidin-Derived Cyclic Tetrapeptides, , WO0107042A1;
  • Liesch, J.M., Sweeley, C.C., Staffeld, G.D., Structure of HC-toxin, a cyclic tetrapeptide from Helminthosporium carbonum (1982) Tetrahedron, 38 (1), pp. 45-48. , DOI 10.1016/0040-4020(82)85043-6
  • Mori, H., Urano, Y., Abe, F., Furukawa, S., Furukawa, S., Tsurumi, Y., Sakamoto, K., Fujii, T., FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). I. Taxonomy, fermentation, isolation and biological activities (2003) Journal of Antibiotics, 56 (2), pp. 72-79
  • Xie, W., Zou, B., Pei, D., Ma, D., Total synthesis of cyclic tetrapeptide FR235222, a potent immunosuppressant that inhibits mammalian histone deacetylases (2005) Organic Letters, 7 (13), pp. 2775-2777. , DOI 10.1021/ol050991r
  • Bougdour, A., Maubon, D., Baldacci, P., Drug inhibition of HDAC3 and epigenetic control of differentiation in apicomplexa parasites (2009) J. Exp. Med., 206, pp. 953-966
  • Maubon, D., Bougdour, A., Wong, Y.-S., Activity of the histone deacetylase inhibitor FR235222 on Toxoplasma gondii: Inhibition of stage conversion of the parasite cyst form and study of new derivative compounds (2010) Antimicrob Agents Chemother, 54, pp. 4843-4850
  • Wong, Y.-S., Hakimi, M.-A., Bougdour, A., (2010) Cyclic Peptides with Anti-Parasitic Activity, , WO2010116985A1;
  • Billker, O., Lourido, S., Sibley, L.D., Calcium-dependent signaling and kinases in apicomplexan parasites (2009) Cell Host. Microbe., 5, pp. 612-622
  • Ojo, K.K., Larson, E.T., Keyloun, K.R., Toxoplasma gondii calciumdependent protein kinase 1 is a target for selective kinase inhibitors (2010) Nat. Struct. Mol. Biol., 17, pp. 602-607
  • Zhang, C., Kenski, D.M., Paulson, J.L., Bonshtien, A., Sessa, G., Cross, J.V., Templeton, D.J., Shokat, K.M., A second-site suppressor strategy for chemical genetic analysis of diverse protein kinases (2005) Nature Methods, 2 (6), pp. 435-441. , DOI 10.1038/nmeth764
  • Bishop, A.C., Kung, C.-Y., Shah, K., Generation of monospecific nanomolar tyrosine kinase inhibitors via a chemical genetic approach (1999) J. Am. Chem. Soc., 121, pp. 627-631
  • Murphy, R.C., Ojo, K.K., Larson, E.T., Discovery of potent and selective inhibitors of CDPK1 from C parvum and T gondii (2010) ACS Med. Chem. Lett., 1, pp. 331-335
  • Johnson, S.M., Murphy, R.C., Geiger, J.A., Development of Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) inhibitors with potent anti-toxoplasma activity (2012) J. Med. Chem., , 10.1021/jm201713h
  • Van Voorhis, W.C., Hol, W.G.J., Larson, E.T., Composition and methods for treating toxoplasmosis cryptosporidiosis and other apicomplexan protozoan related diseases (2011) WO2011094628A1

Citas:

---------- APA ----------
Rodriguez, J.B. & Szajnman, S.H. (2012) . New antibacterials for the treatment of toxoplasmosis; A patent review. Expert Opinion on Therapeutic Patents, 22(3), 311-333.
http://dx.doi.org/10.1517/13543776.2012.668886
---------- CHICAGO ----------
Rodriguez, J.B., Szajnman, S.H. "New antibacterials for the treatment of toxoplasmosis; A patent review" . Expert Opinion on Therapeutic Patents 22, no. 3 (2012) : 311-333.
http://dx.doi.org/10.1517/13543776.2012.668886
---------- MLA ----------
Rodriguez, J.B., Szajnman, S.H. "New antibacterials for the treatment of toxoplasmosis; A patent review" . Expert Opinion on Therapeutic Patents, vol. 22, no. 3, 2012, pp. 311-333.
http://dx.doi.org/10.1517/13543776.2012.668886
---------- VANCOUVER ----------
Rodriguez, J.B., Szajnman, S.H. New antibacterials for the treatment of toxoplasmosis; A patent review. Expert Opin. Ther. Pat. 2012;22(3):311-333.
http://dx.doi.org/10.1517/13543776.2012.668886