Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Many fish species display compensatory growth (CG), a phenomenon by which fasted fish grow faster during refeeding. However, most studies use a group-housed fish approach that could be problematic in social fish when interaction between individuals is not considered or eliminated. Additionally, the growth hormone (GH)/insulin-like growth factors’ (IGF-1 and IGF-2) axis is implicated in postnatal growth in vertebrates, but its relevance in CG is not fully understood. Thus, the aim of this work was to determine whether CG occurs in a social fish, Cichlasoma dimerus, using an individually held fish approach and secondly, to evaluate the GH/IGFs expression profile during refeeding by 3 days and 3 weeks. C. dimerus showed partial CG. The feed conversion efficiency (FCE) was higher in three-day-refed fish, which presented higher GH plasma and mRNA levels than controls but shown no differences in liver and muscle GH receptors (GHR1 and GHR2) and IGFs mRNA levels. Surprisingly, three-week-refed fish exhibited GHR1 and IGF-2 increments, but a reduction in GHR2 expression in muscle. These results show a strong association between GH levels, growth rate and FCE during refeeding, and a long-lasting effect of refeeding on muscular expression of GHRs and IGF-2. © 2018 John Wiley & Sons Ltd

Registro:

Documento: Artículo
Título:Cichlasoma dimerus responds to refeeding with a partial compensatory growth associated with an increment of the feed conversion efficiency and a rapid recovery of GH/IGFs axis
Autor:Delgadin, T.H.; Simó, I.; Pérez Sirkin, D.; Di Yorio, M.P.; Arranz, S.E.; Vissio, P.G.
Filiación:Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) – Área Biología, Universidad Nacional de Rosario, Rosario, Provincia de Santa Fe, Argentina
Palabras clave:fish; GHRs; growth; growth hormone; IGFs; refeeding
Año:2018
Volumen:24
Número:4
Página de inicio:1234
Página de fin:1243
DOI: http://dx.doi.org/10.1111/anu.12661
Título revista:Aquaculture Nutrition
Título revista abreviado:Aquacult. Nutr.
ISSN:13535773
CODEN:AQNUF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13535773_v24_n4_p1234_Delgadin

Referencias:

  • Ali, M., Nicieza, A., Wootton, R.J., Compensatory growth in fishes: A response to growth depression (2003) Fish and Fisheries, 4, pp. 147-190. , https://doi.org/10.1046/j.1467-2979.2003.00120.x
  • Alonso, F., Cánepa, M., Moreira, R.G., Pandolfi, M., Social and reproductive physiology and behavior of the Neotropical cichlid fish Cichlasoma dimerus under laboratory conditions (2011) Neotropical Ichthyology, 9, pp. 559-570. , https://doi.org/10.1590/S1679-62252011005000025
  • Baker, J., Liu, J.P., Robertson, E.J., Efstratiadis, A., Role of insulin-like growth factors in embryonic and postnatal growth (1993) Cell, 75, pp. 73-82. , https://doi.org/10.1016/S0092-8674(05)80085-6
  • Boujard, T., Burel, C., Médale, F., Haylor, G., Moisan, A., Effect of past nutritional history and fasting on feed intake and growthin rainbow trout Oncorhynchus mykiss (2000) Aquatic Living Resources, 13, pp. 129-137. , https://doi.org/10.1016/S0990-7440(00)00149-2
  • Brooks, A.J., Dai, W., O'Mara, M.L., Abankwa, D., Chhabra, Y., Pelekanos, R.A., Parker, M.W., Mechanism of activation of protein kinase JAK2 by the growth hormone receptor (2014) Science, 344, p. 1249783. , https://doi.org/10.1126/science.1249783
  • Brooks, A.J., Wooh, J.W., Tunny, K.A., Waters, M.J., Growth hormone receptor; mechanism of action (2008) The International Journal of Biochemistry & Cell Biology, 40, pp. 1984-1989. , https://doi.org/10.1016/j.biocel.2007.07.008
  • Buckel, J.A., Letcher, B.H., Conover, D.O., Effects of a delayed onset of piscivory on the size of age-0 bluefish (1998) Transactions of The American Fisheries Society, 127, pp. 576-587. , https://doi.org/10.1577/1548-8659(1998)127<0576:EOADOO>2.0.CO;2
  • Cánepa, M.M., Zhu, Y., Fossati, M., Stiller, J.W., Vissio, P.G., Cloning, phylogenetic analysis and expression of somatolactin and its receptor in Cichlasoma dimerus: Their role in long-term background color acclimation (2012) General and Comparative Endocrinology, 176, pp. 52-61. , https://doi.org/10.1016/j.ygcen.2011.12.023
  • Canosa, L.F., Chang, J.P., Peter, R.E., Neuroendocrine control of growth hormone in fish (2007) General and Comparative Endocrinology, 151, pp. 1-26. , https://doi.org/10.1016/j.ygcen.2006.12.010
  • Chang, J.P., Wong, A.O., Growth hormone regulation in fish: A multifactorial model with hypothalamic, peripheral and local autocrine/paracrine signals (2009) Fish Physiology, 28, pp. 151-195. , https://doi.org/10.1016/S1546-5098(09)28004-6
  • Chen, M., Huang, X., Yuen, D.S., Cheng, C.H., A study on the functional interaction between the GH/PRL family of polypeptides with their receptors in zebrafish: Evidence against GHR1 being the receptor for somatolactin (2011) Molecular and Cellular Endocrinology, 337, pp. 114-121. , https://doi.org/10.1016/j.mce.2011.02.006
  • DeChiara, T.M., Efstratiadis, A., Robertson, E.J., A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting (1990) Nature, 345, p. 78. , https://doi.org/10.1038/345078a0
  • Delgadin, T.H., Pérez Sirkin, D.I., Karp, P.J., Fossati, M., Vissio, P.G., Inter-individual variability in reproductive success and somatic growth in Cichlasoma dimerus (Heckle, 1840) (2014) Belgian Journal of Zoology, 144, pp. 102-111
  • Delgadin, T.H., Pérez Sirkin, D.I.P., Di Yorio, M.P., Arranz, S.E., Vissio, P.G., GH, IGF-I and GH receptors mRNA expression in response to growth impairment following a food deprivation period in individually housed cichlid fish Cichlasoma dimerus (2015) Fish Physiology and Biochemistry, 41, pp. 51-60. , https://doi.org/10.1007/s10695-014-0005-x
  • Di Yorio, M.P., Delgadin, T.H., Pérez Sirkin, D.I., Vissio, P.G., Growth hormone, luteinizing hormone, and follicle-stimulating hormone regulation by neuropeptide Y in both sexes of the cichlid fish, Cichlasoma dimerus (2015) Fish Physiology and Biochemistry, 41, pp. 843-852. , https://doi.org/10.1007/s10695-015-0051-z
  • Dobson, S.H., Holmes, R.M., Compensatory growth in the rainbow trout, Salmo gairdneri Richardson (1984) Journal of Fish Biology, 25, pp. 649-656. , https://doi.org/10.1111/j.1095-8649.1984.tb04911.x
  • Duan, C., The insulin-like growth factor system and its biological actions in fish (1997) American Zoologist, 37, pp. 491-503. , https://doi.org/10.1093/icb/37.6.491
  • Ellens, E.R., Kittilson, J.D., Hall, J.A., Sower, S.A., Sheridan, M.A., Evolutionary origin and divergence of the growth hormone receptor family: Insight from studies on sea lamprey (2013) General and Comparative Endocrinology, 192, pp. 222-236. , https://doi.org/10.1016/j.ygcen.2013.05.008
  • Fox, B.K., Breves, J.P., Davis, L.K., Pierce, A.L., Hirano, T., Grau, E.G., Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: Importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia (2010) General and Comparative Endocrinology, 166, pp. 573-580. , https://doi.org/10.1016/j.ygcen.2009.11.012
  • Fuentes, E.N., Einarsdottir, I.E., Valdes, J.A., Alvarez, M., Molina, A., Björnsson, B.T., Inherent growth hormone resistance in the skeletal muscle of the fine flounder is modulated by nutritional status and is characterized by high contents of truncated GHR, impairment in the JAK2/STAT5 signaling pathway, and low IGF-I expression (2011) Endocrinology, 153, pp. 283-294
  • Fukada, H., Murashita, K., Furutani, T., Masumoto, T., Yellowtail insulin-like growth factor 1: Molecular cloning and response to various nutritional conditions (2012) Domestic Animal Endocrinology, 42, pp. 220-229. , https://doi.org/10.1016/j.domaniend.2011.12.005
  • Gabillard, J.C., Kamangar, B.B., Montserrat, N., Coordinated regulation of the GH/IGF system genes during refeeding in rainbow trout (Oncorhynchus mykiss) (2006) Journal of Endocrinology, 191 (1), pp. 15-24. , https://doi.org/10.1677/joe.1.06869
  • Gahete, M.D., Durán-Prado, M., Luque, R.M., Martínez-Fuentes, A.J., Quintero, A., Gutiérrez-Pascual, E., Castaño, J.P., Understanding the multifactorial control of growth hormone release by somatotropes (2009) Annals of the New York Academy of Sciences, 1163, pp. 137-153. , https://doi.org/10.1111/j.1749-6632.2008.03660.x
  • Genovese, G., Da Cuna, R., Towle, D.W., Maggese, M.C., Nostro, F.L., Early expression of zona pellucida proteins under octylphenol exposure in Cichlasoma dimerus (Perciformes, Cichlidae) (2011) Aquatic Toxicology, 101, pp. 175-185. , https://doi.org/10.1016/j.aquatox.2010.09.017
  • Genovese, G., Regueira, M., Piazza, Y., Towle, D.W., Maggese, M.C., Nostro, F.L., Time-course recovery of estrogen-responsive genes of a cichlid fish exposed to waterborne octylphenol (2012) Aquatic Toxicology, 114, pp. 1-13. , https://doi.org/10.1016/j.aquatox.2012.02.005
  • Hattori, N., Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system (2009) Growth Hormone & IGF Research, 19, pp. 187-197. , https://doi.org/10.1016/j.ghir.2008.12.001
  • Hayward, R.S., Noltie, D.B., Wang, N., Use of compensatory growth to double hybrid sunfish growth rates (1997) Transactions of the American Fisheries Society, 126, pp. 316-322. , https://doi.org/10.1577/1548-8659(1997)126<0316:NUOCGT>2.3.CO;2
  • Hayward, R.S., Wang, N., Noltie, D.B., Group holding impedes compensatory growth of hybrid sunfish (2000) Aquaculture, 183, pp. 299-305. , https://doi.org/10.1016/S0044-8486(99)00301-4
  • Jiao, B., Huang, X., Chan, C.B., Zhang, L., Wang, D., Cheng, C.H., The co-existence of two growth hormone receptors in teleost fish and their differential signal transduction, tissue distribution and hormonal regulation of expression in seabream (2006) Journal of Molecular Endocrinology, 36, pp. 23-40. , https://doi.org/10.1677/jme.1.01945
  • Jobling, M., Jørgensen, E.H., Siikavuopio, S.I., The influence of previous feeding regime on the compensatory growth response of maturing and immature Arctic charr, Salvelinus alpinus (1993) Journal of Fish Biology, 43, pp. 409-419. , https://doi.org/10.1111/j.1095-8649.1993.tb00576.x
  • Jobling, M., Koskela, J., Interindividual variations in feeding and growth in rainbow trout during restricted feeding and in a subsequent period of compensatory growth (1996) Journal of Fish Biology, 49, pp. 658-667. , https://doi.org/10.1111/j.1095-8649.1996.tb00062.x
  • Johnston, I.A., Bower, N.I., Macqueen, D.J., Growth and the regulation of myotomal muscle mass in teleost fish (2011) Journal of Experimental Biology, 214, pp. 1617-1628. , https://doi.org/10.1242/jeb.038620
  • Koppe, W., Pockrandt, J., Meyer-Burgdorff, K.H., Gunther, K.D., Effects of realimentation after a period of restricted feeding on food intake, growth, and body composition in Piaractus brachypomus (Cuvier 1818), a South American characoid fish (1993) Fish ecotoxicology and ecophysiology, pp. 263-268. , T. Braunbeck, W. Hanke, H. Senger, (Eds.),, New York, VCH
  • Liu, J.P., Baker, J., Perkins, A.S., Robertson, E.J., Efstratiadis, A., Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r) (1993) Cell, 75, pp. 59-72
  • Mlglavs, I., Jobling, M., Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinm alpinus, with particular respect to compensatory growth (1989) Journal of Fish Biology, 34, pp. 947-957. , https://doi.org/10.1111/j.1095-8649.1989.tb03377.x
  • Montserrat, N., Gabillard, J.C., Capilla, E., Navarro, M.I., Gutiérrez, J., Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss) (2007) General and Comparative Endocrinology, 150, pp. 462-472. , https://doi.org/10.1016/j.ygcen.2006.11.009
  • Nakae, J., Kido, Y., Accili, D., Distinct and overlapping functions of insulin and IGF-I receptors (2001) Endocrine Reviews, 22, pp. 818-835. , https://doi.org/10.1210/edrv.22.6.0452
  • Nelson, J.S., Grande, T.C., Wilson, M.V., (2016) Fishes of the world, , https://doi.org/10.1002/9781119174844, Hoboken, NJ, John Wiley & Sons
  • Pandolfi, M., Paz, D.A., Maggese, C., Meijide, F.J., Vissio, P.G., Immunocytochemical localization of different cell types in the adenohypophysis of the cichlid fish Cichlasoma dimerus (Heckel, 1840) (2001) Biocell: Official Journal of the Sociedades Latinoamericanas de Microscopia Electronica … et. al, 25, pp. 35-42
  • Peres, H., Santos, S., Oliva-Teles, A., Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent refeeding (2011) Aquaculture, 318, pp. 384-388. , https://doi.org/10.1016/j.aquaculture.2011.06.010
  • Pérez Sirkin, D.I., Cánepa, M.M., Fossati, M., Fernandino, J.I., Delgadin, T., Canosa, L.F., Vissio, P.G., Melanin concentrating hormone (MCH) is involved in the regulation of growth hormone in Cichlasoma dimerus (Cichlidae, Teleostei) (2012) General and Comparative Endocrinology, 176, pp. 102-111. , https://doi.org/10.1016/j.ygcen.2012.01.002
  • Picha, M.E., Turano, M.J., Tipsmark, C.K., Borski, R.J., Regulation of endocrine and paracrine sources of Igfs and Gh receptor during compensatory growth in hybrid striped bass (Morone chrysops× Morone saxatilis) (2008) Journal of Endocrinology, 199, pp. 81-94. , https://doi.org/10.1677/JOE-07-0649
  • Qian, X., Cui, Y., Xiong, B., Yang, Y., Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation (2000) Journal of Fish Biology, 56, pp. 228-232. , https://doi.org/10.1111/j.1095-8649.2000.tb02101.x
  • Ramakers, C., Ruijter, J.M., Deprez, R.H.L., Moorman, A.F., Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data (2003) Neuroscience Letters, 339, pp. 62-66. , https://doi.org/10.1016/S0304-3940(02)01423-4
  • Ramallo, M.R., Morandini, L., Alonso, F., Birba, A., Tubert, C., Fiszbein, A., Pandolfi, M., The endocrine regulation of cichlids social and reproductive behavior through the eyes of the chanchita, Cichlasoma dimerus (Percomorpha; Cichlidae) (2014) Journal of Physiology-Paris, 108, pp. 194-202. , https://doi.org/10.1016/j.jphysparis.2014.08.004
  • Ruijter, J.M., Ramakers, C., Hoogaars, W.M.H., Karlen, Y., Bakker, O., Van den Hoff, M.J.B., Moorman, A.F.M., Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data (2009) Nucleic Acids Research, 37. , https://doi.org/10.1093/nar/gkp045
  • Saera-Vila, A., Calduch-Giner, J.A., Pérez-Sánchez, J., Duplication of growth hormone receptor (GHR) in fish genome: Gene organization and transcriptional regulation of GHR type I and II in gilthead sea bream (Sparus aurata) (2005) General and Comparative Endocrinology, 142, pp. 193-203. , https://doi.org/10.1016/j.ygcen.2004.11.005
  • Sciara, A.A., Rubiolo, J.A., Somoza, G.M., Arranz, S.E., Molecular cloning, expression and immunological characterization of pejerrey (Odontesthes bonariensis) growth hormone (2006) Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 142, pp. 284-292
  • Sjögren, K., Liu, J.L., Blad, K., Skrtic, S., Vidal, O., Wallenius, V., Ohlsson, C., Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice (1999) Proceedings of the National Academy of Sciences, 96, pp. 7088-7092. , https://doi.org/10.1073/pnas.96.12.7088
  • Terova, G., Rimoldi, S., Chini, V., Gornati, R., Bernardini, G., Saroglia, M., Cloning and expression analysis of insulin-like growth factor I and II in liver and muscle of sea bass (Dicentrarchus labrax, L.) during long-term fasting and refeeding (2007) Journal of Fish Biology, 70, pp. 219-233. , https://doi.org/10.1111/j.1095-8649.2007.01402.x
  • Thorpe, J.E., Talbot, C., Miles, M.S., Keay, D.S., Control of maturation in cultured Atlantic salmon, Salmo salar, in pumped seawater tanks, by restricting food intake (1990) Aquaculture, 86, pp. 315-326. , https://doi.org/10.1016/0044-8486(90)90122-4
  • Tian, X., Qin, J.G., A single phase of food deprivation provoked compensatory growth in barramundi Lates calcarifer (2003) Aquaculture, 224, pp. 169-179. , https://doi.org/10.1016/S0044-8486(03)00224-2
  • Uchida, K., Kajimura, S., Riley, L.G., Hirano, T., Aida, K., Grau, E.G., Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus (2003) Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 134, pp. 429-439. , https://doi.org/10.1016/S1095-6433(02)00318-5
  • Wang, Y., Cui, Y., Yang, Y., Cai, F., Compensatory growth in hybrid tilapia, Oreochromis mossambicus× O. niloticus, reared in seawater (2000) Aquaculture, 189, pp. 101-108. , https://doi.org/10.1016/S0044-8486(00)00353-7
  • Wilson, P.N., Osbourn, D.F., Compensatory growth after undernutrition in mammals and birds (1960) Biological Reviews, 35, pp. 324-361. , https://doi.org/10.1111/j.1469-185X.1960.tb01327.x
  • Won, E.T., Borski, R.J., Endocrine regulation of compensatory growth in fish (2013) Frontiers in Endocrinology, 4, p. 74
  • Wood, A.W., Duan, C., Bern, H.A., Insulin-like growth factor signaling in fish (2005) International Review of Cytology, 243, pp. 215-285. , https://doi.org/10.1016/S0074-7696(05)43004-1
  • Yakar, S., Liu, J.L., Stannard, B., Butler, A., Accili, D., Sauer, B., LeRoith, D., Normal growth and development in the absence of hepatic insulin-like growth factor I (1999) Proceedings of the National Academy of Sciences, 96, pp. 7324-7329. , https://doi.org/10.1073/pnas.96.13.7324
  • Zhu, X., Cui, Y., Ali, M., Wootton, R.J., Comparison of compensatory growth responses of juvenile three-spined stickleback and minnow following similar food deprivation protocols (2001) Journal of Fish Biology, 58, pp. 1149-1165. , https://doi.org/10.1111/j.1095-8649.2001.tb00562.x

Citas:

---------- APA ----------
Delgadin, T.H., Simó, I., Pérez Sirkin, D., Di Yorio, M.P., Arranz, S.E. & Vissio, P.G. (2018) . Cichlasoma dimerus responds to refeeding with a partial compensatory growth associated with an increment of the feed conversion efficiency and a rapid recovery of GH/IGFs axis. Aquaculture Nutrition, 24(4), 1234-1243.
http://dx.doi.org/10.1111/anu.12661
---------- CHICAGO ----------
Delgadin, T.H., Simó, I., Pérez Sirkin, D., Di Yorio, M.P., Arranz, S.E., Vissio, P.G. "Cichlasoma dimerus responds to refeeding with a partial compensatory growth associated with an increment of the feed conversion efficiency and a rapid recovery of GH/IGFs axis" . Aquaculture Nutrition 24, no. 4 (2018) : 1234-1243.
http://dx.doi.org/10.1111/anu.12661
---------- MLA ----------
Delgadin, T.H., Simó, I., Pérez Sirkin, D., Di Yorio, M.P., Arranz, S.E., Vissio, P.G. "Cichlasoma dimerus responds to refeeding with a partial compensatory growth associated with an increment of the feed conversion efficiency and a rapid recovery of GH/IGFs axis" . Aquaculture Nutrition, vol. 24, no. 4, 2018, pp. 1234-1243.
http://dx.doi.org/10.1111/anu.12661
---------- VANCOUVER ----------
Delgadin, T.H., Simó, I., Pérez Sirkin, D., Di Yorio, M.P., Arranz, S.E., Vissio, P.G. Cichlasoma dimerus responds to refeeding with a partial compensatory growth associated with an increment of the feed conversion efficiency and a rapid recovery of GH/IGFs axis. Aquacult. Nutr. 2018;24(4):1234-1243.
http://dx.doi.org/10.1111/anu.12661