Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The etiology of pituitary adenomas remains largely unknown, with the exception of involvement of estrogens in the formation of prolactinomas. We have examined the molecular pathogenesis of prolactin-producing pituitary adenomas in transgenic female mice expressing the human choriongonadotropin (hCG) β-subunit. The LH/CG bioactivity is elevated in the mice, with consequent highly stimulated ovarian progesterone (P4) production, in the face of normal estrogen secretion. Curiously, despite normal estrogen levels, large prolactinomas developed in these mice, and we provide here several lines of evidence that the elevated P4 levels are involved in the growth of these estrogen-dependent tumors. The antiprogestin mifepristone inhibited tumor growth, and combined postgonadectomy estradiol/P4 treatment was more effective than estrogen alone in inducing tumor growth. Evidence for direct growth-promoting effect of P4 was obtained from cultures of primary mouse pituitary cells and rat somatomammotroph GH3 cells. The mouse tumors and cultured cells revealed stimulation of the cyclin D1/cyclin-dependent kinase 4/retinoblastoma protein/transcription factor E2F1 pathway in the growth response to P4. If extrapolated to humans, and given the importance of endogenous P4 and synthetic progestins in female reproductive functions and their pharmacotherapy, it is relevant to revisit the potential role of these hormones in the origin and growth of prolactinomas. © 2010 Society for Endocrinology.

Registro:

Documento: Artículo
Título:Enhanced LH action in transgenic female mice expressing hCGβ-subunit induces pituitary prolactinomas; the role of high progesterone levels
Autor:Ahtiainen, P.; Sharp, V.; Rulli, S.B.; Rivero-Müller, A.; Mamaeva, V.; Röyttä, M.; Huhtaniemi, I.
Filiación:Department of Physiology, University of Turku, FIN-20520 Turku, Finland
Turku Graduate School of Biomedical Science, University of Turku, FIN-20520 Turku, Finland
Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
Institute of Biology and Experimental Medicine-CONICET, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
Department of Pathology, University of Turku, FIN-20520 Turku, Finland
Palabras clave:bromocriptine; chorionic gonadotropin beta subunit; cyclin D1; cyclin dependent kinase 4; estradiol; luteinizing hormone; mifepristone; progesterone; retinoblastoma protein; tamoxifen; transcription factor E2F1; chorionic gonadotropin beta subunit; cyclin dependent kinase 4; luteinizing hormone; progesterone; prolactin; animal cell; animal experiment; animal model; article; cell culture; controlled study; female; gonadectomy; histology; hypophysis tumor; immunohistochemistry; mouse; nonhuman; ovary; progesterone release; prolactinoma; radioimmunoassay; rat; reverse transcription polymerase chain reaction; transgenic mouse; tumor growth; analysis of variance; animal; blood; cell proliferation; cytology; genetics; hypophysis; hypophysis tumor; metabolism; prolactinoma; Analysis of Variance; Animals; Cell Proliferation; Cells, Cultured; Chorionic Gonadotropin, beta Subunit, Human; Cyclin-Dependent Kinase 4; Female; Luteinizing Hormone; Mice; Mice, Transgenic; Pituitary Gland; Pituitary Neoplasms; Progesterone; Prolactin; Prolactinoma; Radioimmunoassay; Reverse Transcriptase Polymerase Chain Reaction
Año:2010
Volumen:17
Número:3
Página de inicio:611
Página de fin:621
DOI: http://dx.doi.org/10.1677/ERC-10-0016
Título revista:Endocrine-Related Cancer
Título revista abreviado:Endocr.-Relat. Cancer
ISSN:13510088
CODEN:ERCAE
CAS:bromocriptine, 25614-03-3; cyclin dependent kinase 4, 147014-97-9; estradiol, 50-28-2; luteinizing hormone, 39341-83-8, 9002-67-9; mifepristone, 84371-65-3; progesterone, 57-83-0; tamoxifen, 10540-29-1; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; Chorionic Gonadotropin, beta Subunit, Human; Cyclin-Dependent Kinase 4, 2.7.11.22; Luteinizing Hormone, 9002-67-9; Progesterone, 57-83-0; Prolactin, 9002-62-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13510088_v17_n3_p611_Ahtiainen

Referencias:

  • Ahtiainen, P., Rulli, S.B., Shariatmadari, R., Pelliniemi, L.J., Toppari, J., Poutanen, M., Huhtaniemi, I.T., Fetal but not adult Leydig cells are susceptible to adenoma formation in response to persistently high hCG level: A study on hCG overexpressing transgenic mice (2005) Oncogene, 24 (49), pp. 7301-7309. , DOI 10.1038/sj.onc.1208893, PII 1208893
  • Bergendahl, M., Perheentupa, A., Huhtaniemi, I., Effect of short-term starvation on reproductive hormone gene expression, secretion and receptor levels in male rats (1989) Journal of Endocrinology, 121 (3), pp. 409-417
  • Chen, C.L., Meites, J., Effects of estrogen and progesterone on serum and pituitary prolactin levels in ovariectomized rats (1970) Endocrinology, 86, pp. 503-505
  • Cicatiello, L., Addeo, R., Sasso, A., Altucci, L., Petrizzi, V.B., Borgo, R., Cancemi, M., Scafoglio, C., Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter (2004) Molecular and Cellular Biology, 24, pp. 7260-7274
  • Daly, A.F., Rixhon, M., Adam, C., Dempegioti, A., Tichomirowa, M.A., Beckers, A., High prevalence of pituitary adenomas: A cross-sectional study in the province of Liege, Belgium (2006) Journal of Clinical Endocrinology and Metabolism, 91 (12), pp. 4769-4775. , http://jcem.endojournals.org/cgi/reprint/91/12/4769, DOI 10.1210/jc.2006-1668
  • Drange, M.R., Fram, N.R., Herman-Bonert, V., Melmed, S., Pituitary tumor registry: A novel clinical resource (2000) Journal of Clinical Endocrinology and Metabolism, 85 (1), pp. 168-174. , DOI 10.1210/jc.85.1.168
  • Eigeliene, N., Harkonen, P., Erkkola, R., Effects of estradiol and medroxyprogesterone acetate on expression of the cell cycle proteins cyclin D1, p21 and p27 in cultured human breast tissues (2008) Cell Cycle, 7, pp. 71-80
  • Faglia, G., Epidemiology and pathogenesis of pituitary adenomas (1993) Acta Endocrinologica, 129, pp. 1-5
  • Fedele, M., Visone, R., De Martino, I., Troncone, G., Palmieri, D., Battista, S., Ciarmiello, A., Melillo, R.M., HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity (2006) Cancer Cell, 9, pp. 459-471
  • Franklin, D.S., Godfrey, V.L., Lee, H., Kovalev, G.I., Schoonhoven, R., Chen-Kiang, S., Su, L., Xiong, Y., CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis (1998) Genes and Development, 12 (18), pp. 2899-2911
  • Haug, E., Gautvik, K.M., Effects of sex steroids on prolactin secreting rat pituitary cells in culture (1976) Endocrinology, 99 (6), pp. 1482-1489
  • Heaney, A.P., Fernando, M., Melmed, S., Functional role of estrogen in pituitary tumor pathogenesis (2002) Journal of Clinical Investigation, 109 (2), pp. 277-283. , DOI 10.1172/JCI200214264
  • Hentges, S.T., Low, M.J., Ovarian dependence for pituitary tumorigenesis in D2 dopamine receptor-deficient mice (2002) Endocrinology, 143, pp. 4536-4543
  • Hyde, J.F., Engle, M.G., Maley, B.E., Colocalization of galanin and prolactin within secretory granules of anterior pituitary cells in estrogen-treated Fischer 344 rats (1991) Endocrinology, 129, pp. 270-276
  • Jacks, T., Fazeli, A., Schmitt, E.M., Bronson, R.T., Goodell, M.A., Weinberg, R.A., Effects of an Rb mutation in the mouse (1992) Nature, 359, pp. 295-300
  • Jaffrain-Rea, M.L., Petrangeli, E., Ortolani, F., Fraioli, B., Lise, A., Esposito, V., Spagnoli, L.G., Gulino, A., Cellular receptors for sex steroids in human pituitary adenomas (1996) Journal of Endocrinology, 151 (2), pp. 175-184
  • Kashima, H., Shiozawa, T., Miyamoto, T., Suzuki, A., Uchikawa, J., Kurai, M., Konishi, I., Autocrine stimulation of IGF1 in estrogen-induced growth of endometrial carcinoma cells: Involvement of the mitogen-activated protein kinase pathway followed by up-regulation of cyclin D1 and cyclin E (2009) Endocrine-Related Cancer, 16, pp. 113-122
  • Lamberts, S.W.J., Uitterlinden, P., Bons, E.G., Verleun, T., Comparison of the actions of RU 38486 and megestrol acetate in the model of a transplantable adrenocorticotropin- and prolactin-secreting rat pituitary tumor (1985) Cancer Research, 45 (3), pp. 1015-1019
  • Lavoie, J.N., L'Allemain, G., Brunei, A., Muller, R., Pouyssegur, J., Cyclin D1 expression is regulated positively by the p42/p44(MAPK) and negatively by the p38/HOG(MAPK) pathway (1996) Journal of Biological Chemistry, 271 (34), pp. 20608-20616. , DOI 10.1074/jbc.271.34.20608
  • Lieberman, M.E., Maurer, R.A., Claude, P., Wiklund, J., Wertz, N., Gorski, J., Regulation of pituitary growth and prolactin gene expression by estrogen (1981) Advances in Experimental Medicine and Biology, 138, pp. 151-163
  • Liu, J.C., Baker, R.E., Sun, C., Sundmark, V.C., Elsholtz, H.P., Activation of Go-coupled dopamine D2 receptors inhibits ERK1/ERK2 in pituitary cells. A key step in the transcriptional suppression of the prolactin gene (2002) Journal of Biological Chemistry, 277, pp. 35819-35825
  • Martin, L., Hallowes, R.C., Finn, C.A., West, D.G., Involvement of the uterine blood vessels in the refractory state of the uterine stroma which follows oestrogen stimulation in progesterone-treated mice (1973) Journal of Endocrinology, 56, pp. 309-314
  • Maurer, R.A., Estradiol regulates the transcription of the prolactin gene (1982) Journal of Biological Chemistry, 257 (5), pp. 2133-2136
  • McComb, D.J., Ryan, N., Horvath, E., Kovacs, K., Subclinical adenomas of the human pituitary. New light on old problems (1983) Archives of Pathology & Laboratory Medicine, 107, pp. 488-491
  • Migliaccio, A., Piccolo, D., Castoria, G., Di Domenico, M., Bilancio, A., Lombardi, M., Gong, W., Auricchio, F., Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor (1998) EMBO Journal, 17, pp. 2008-2018
  • Molitch, M.E., Management of prolactinomas during pregnancy (1999) Journal of Reproductive Medicine, 44, pp. 1121-1126
  • Mueller, A., Gooren, L., Hormone-related tumors in transsexuals receiving treatment with cross-sex hormones (2008) European Journal of Endocrinology, 159, pp. 197-202
  • Musat, M., Vax, V.V., Borboli, N., Gueorguiev, M., Bonner, S., Korbonits, M., Grossman, A.B., Cell cycle dysregulation in pituitary oncogenesis (2004) Frontiers of Hormone Research, 32, pp. 34-62
  • Paez-Pereda, M., Giacomini, D., Refojo, D., Nagashima, A.C., Hopfner, U., Grubler, Y., Chervin, A., Hentges, S.T., Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk (2003) PNAS, 100, pp. 1034-1039
  • Pastorcic, M., De, A., Boyadjieva, N., Vale, W., Sarkar, D.K., Reduction in the expression and action of transforming growth factor beta 1 on lactotropes during estrogen-induced tumorigenesis in the anterior pituitary (1995) Cancer Research, 55, pp. 4892-4898
  • Peters, G., The D-type cyclins and their role in tumorigenesis (1994) Journal of Cell Science. Supplement, 18, pp. 89-96
  • Piroli, G.G., Cassataro, J., Pietranera, L., Grillo, C.A., Ferrini, M., Lux-Lantos, V., De Nicola, A.F., Progestin regulation of galanin and prolactic gene expression in oestrogen-induced pituitary tumours (2001) Journal of Neuroendocrinology, 13 (3), pp. 302-309. , DOI 10.1046/j.1365-2826.2001.00633.x
  • Poel, W.E., Pituitary tumors in mice after prolonged feeding of synthetic progestins (1966) Science, 154, pp. 402-403
  • Rey-Roldan, E.B., Grillo, C.A., Pietranera, L., Libertun, C., De Nicola, A.F., Piroli, G.G., Levonorgestrel antagonism on estrogen-induced pituitary tumors is mediated by progesterone receptors (2008) Hormone and Metabolic Research, 40 (4), pp. 245-250. , DOI 10.1055/s-2008-1046798
  • Rulli, S.B., Kuorelahti, A., Karaer, O., Pelliniemi, L.J., Poutanen, M., Huhtaniemi, I., Reproductive disturbances, pituitary lactotrope adenomas, and mammary gland tumors in transgenic female mice producing high levels of human chorionic gonadotropin (2002) Endocrinology, 143 (10), pp. 4084-4095. , DOI 10.1210/en.2002-220490
  • Saitoh, M., Ohmichi, M., Takahashi, K., Kawagoe, J., Ohta, T., Doshida, M., Takahashi, T., Du, B., Medroxyprogesterone acetate induces cell proliferation through up-regulation of cyclin D1 expression via phosphatidylinositol 3-kinase/Akt/nuclear factor-kappaB cascade in human breast cancer cells (2005) Endocrinology, 146, pp. 4917-4925
  • Sutherland, R.L., Prall, O.W., Watts, C.K., Musgrove, E.A., Estrogen and progestin regulation of cell cycle progression (1998) Journal of Mammary Gland Biology and Neoplasia, 3, pp. 63-72
  • Turgeon, J.L., Shyamala, G., Waring, D.W., PR localization and anterior pituitary cell populations in vitro in ovariectomized wild-type and PR-knockout mice (2001) Endocrinology, 142, pp. 4479-4485
  • Walker, B.E., Kurth, L.A., Pituitary tumors in mice exposed prenatally to diethylstilbestrol (1993) Cancer Research, 53, pp. 1546-1549
  • Williams, R.F., Gordon, K., Fung, H., Kolm, P., Hodgen, G.D., Hypothalamo-pituitary effects of RU486: Inhibition of progesterone-induced hyperprolactinaemia (1994) Human Reproduction, 9 (SUPPL. 1), pp. 63-68
  • Yamasaki, L., Bronson, R., Williams, B.O., Dyson, N.J., Harlow, E., Jacks, T., Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/- ) mice (1998) Nature Genetics, 18 (4), pp. 360-364. , DOI 10.1038/ng0498-360
  • Yen, S.H., Pan, J.T., Progesterone advances the diurnal rhythm of tuberoinfundibular dopaminergic neuronal activity and the prolactin surge in ovariectomized, estrogen-primed rats and in intact proestrous rats (1998) Endocrinology, 139, pp. 1602-1609

Citas:

---------- APA ----------
Ahtiainen, P., Sharp, V., Rulli, S.B., Rivero-Müller, A., Mamaeva, V., Röyttä, M. & Huhtaniemi, I. (2010) . Enhanced LH action in transgenic female mice expressing hCGβ-subunit induces pituitary prolactinomas; the role of high progesterone levels. Endocrine-Related Cancer, 17(3), 611-621.
http://dx.doi.org/10.1677/ERC-10-0016
---------- CHICAGO ----------
Ahtiainen, P., Sharp, V., Rulli, S.B., Rivero-Müller, A., Mamaeva, V., Röyttä, M., et al. "Enhanced LH action in transgenic female mice expressing hCGβ-subunit induces pituitary prolactinomas; the role of high progesterone levels" . Endocrine-Related Cancer 17, no. 3 (2010) : 611-621.
http://dx.doi.org/10.1677/ERC-10-0016
---------- MLA ----------
Ahtiainen, P., Sharp, V., Rulli, S.B., Rivero-Müller, A., Mamaeva, V., Röyttä, M., et al. "Enhanced LH action in transgenic female mice expressing hCGβ-subunit induces pituitary prolactinomas; the role of high progesterone levels" . Endocrine-Related Cancer, vol. 17, no. 3, 2010, pp. 611-621.
http://dx.doi.org/10.1677/ERC-10-0016
---------- VANCOUVER ----------
Ahtiainen, P., Sharp, V., Rulli, S.B., Rivero-Müller, A., Mamaeva, V., Röyttä, M., et al. Enhanced LH action in transgenic female mice expressing hCGβ-subunit induces pituitary prolactinomas; the role of high progesterone levels. Endocr.-Relat. Cancer. 2010;17(3):611-621.
http://dx.doi.org/10.1677/ERC-10-0016