Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings. © 2013 Macmillan Publishers Limited All rights reserved.

Registro:

Documento: Artículo
Título:Glycobiology of cell death: When glycans and lectins govern cell fate
Autor:Lichtenstein, R.G.; Rabinovich, G.A.
Filiación:Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428A, Argentina
Laboratorio de Glicómica Funcional, Departamento de Química Bioló Gica, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428A, Argentina
Palabras clave:Apoptosis; Autophagy; Galectins; Glycans; Lectins; beta1 integrin; binding protein; carbohydrate; caspase 3; caspase 9; CD45 antigen; dectin 1; ecalectin; Fas antigen; galectin; galectin 1; galectin 2; galectin 3; galectin 4; galectin 7; galectin 8; glycan; lactadherin; lectin; PADGEM protein; protein Bax; protein bcl 2; tumor necrosis factor receptor 1; adaptive immunity; apoptosis; autophagy; CD8+ T lymphocyte; cell death; cell fate; cell growth; cell proliferation; cell survival; cell viability; glycobiology; glycosylation; human; human cell; phagocytosis; priority journal; protein phosphorylation; protein protein interaction; review; Animals; Apoptosis; Cell Death; Glycosylation; Humans; Lectins; Polysaccharides; Signal Transduction
Año:2013
Volumen:20
Número:8
Página de inicio:976
Página de fin:986
DOI: http://dx.doi.org/10.1038/cdd.2013.50
Título revista:Cell Death and Differentiation
Título revista abreviado:Cell Death Differ.
ISSN:13509047
CODEN:CDDIE
CAS:caspase 3, 169592-56-7; caspase 9, 180189-96-2; galectin 1, 258495-34-0; galectin 3, 208128-56-7; galectin 8, 220452-97-1; protein bcl 2, 219306-68-0; Lectins; Polysaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13509047_v20_n8_p976_Lichtenstein

Referencias:

  • Lockshin, R.A., Williams, C.M., Programmed cell death-I. Cytology of degeneration in the intersegmental muscles of the pernyi silkmoth (1965) J Insect Physiol, 11, pp. 123-133
  • Kerr, J.F., Wyllie, A.H., Currie, A.R., Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics (1972) Br J Cancer, 26, pp. 239-257
  • Sharon, N., Lis, H., History of lectins: From hemagglutinins to biological recognition molecules (2004) Glycobiology, 14, pp. 53R-62R
  • Morris, R.G., Hargreaves, A.D., Duvall, E., Wyllie, A.H., Hormone-induced cell death. 2 Surface changes in thymocytes undergoing apoptosis (1984) Am J Pathol, 115, pp. 426-436
  • Duvall, E., Wyllie, A.H., Morris, R.G., Macrophage recognition of cells undergoing programmed cell death (apoptosis) (1985) Immunology, 56, pp. 351-358
  • Griffiths, G.D., Leek, M.D., Gee, D.J., The toxic plant proteins ricin and abrin induce apoptotic changes in mammalian lymphoid tissues and intestine (1987) J Pathol, 151, pp. 221-229
  • Wesselborg, S., Kabelitz, D., Activation-driven death of human T cell clones: Time course kinetics of the induction of cell shrinkage, DNA fragmentation, and cell death (1993) Cell Immunol, 148, pp. 234-241
  • Bu Ssing, A., Suzart, K., Bergmann, J., Pfu Ller, U., Schietzel, M., Schweizer, K., Induction of apoptosis in human lymphocytes treated with Viscum album L. is mediated by the mistletoe lectins (1996) Cancer Lett, 99, pp. 59-72
  • Fu, L.L., Zhou, C.C., Yao, S., Yu, J.Y., Liu, B., Bao, J.K., Plant lectins: Targeting programmed cell death pathways as antitumor agents (2011) Int J Biochem Cell Biol, 43, pp. 1442-1449
  • Rabinovich, G.A., Galectins: An evolutionarily conserved family of animal lectins with multifunctional properties; A trip from the gene to clinical therapy (1999) Cell Death Differ, 6, pp. 711-721
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Liu, F.T., Yang, R.Y., Hsu, D.K., Galectins in acute and chronic inflammation (2012) Ann N y Acad Sci, 1253, pp. 80-91
  • Brewer, C.F., Miceli, M.C., Baum, L.G., Clusters, bundles, arrays and lattices: Novel mechanisms for lectin-saccharide-mediated cellular interactions (2002) Curr Opin Struct Biol, 12, pp. 616-623
  • Vasta, G.R., Galectins as pattern recognition receptors: Structure, function, and evolution (2012) Adv Exp Med Biol, 946, pp. 21-36
  • Marth, J.D., Grewal, P.K., Mammalian glycosylation in immunity (2008) Nat Rev Immunol, 8, pp. 874-887
  • Hernandez, J.D., Baum, L.G., Ah, sweet mystery of death! Galectins and control of cell fate (2002) Glycobiology, 12, pp. 127R-136R
  • Fuster, M.M., Esko, J.D., The sweet and sour of cancer: Glycans as novel therapeutic targets (2005) Nat Rev Cancer, 5, pp. 526-542
  • Wagner, K.W., Punnoose, E.A., Januario, T., Lawrence, D.A., Pitti, R.M., Lancaster, K., Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL (2007) Nat Med, 13, pp. 1070-1077
  • Moriwaki, K., Noda, K., Furukawa, Y., Ohshima, K., Uchiyama, A., Nakagawa, T., Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling (2009) Gastroenterology, 137, pp. 188-198
  • Moriwaki, K., Shinzaki, S., Miyoshi, E., GDP-mannose-4,6-dehydratase (GMDS) deficiency renders colon cancer cells resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor- and CD95-mediated apoptosis by inhibiting complex II formation (2011) J Biol Chem, 286, pp. 43123-43133
  • Shatnyeva, O.M., Kubarenko, A.V., Weber, C.E., Pappa, A., Schwartz-Albiez, R., Weber, A.N., Modulation of the CD95-induced apoptosis: The role of CD95 N-glycosylation (2011) PLoS One, 6, pp. e19927
  • Charlier, E., Condé, C., Zhang, J., Deneubourg, L., Di Valentin, E., Rahmouni, S., SHIP-1 inhibits CD95/APO-1/Fas-induced apoptosis in primary T lymphocytes and T leukemic cells by promoting CD95 glycosylation independently of its phosphatase activity (2010) Leukemia, 24, pp. 821-832
  • Dall'Olio, F., Chiricolo, M., Sialyltransferases in cancer (2001) Glycoconj J, 18, pp. 841-850
  • Peter, M.E., Hellbardt, S., Schwartz-Albiez, R., Westendorp, M.O., Walczak, H., Moldenhauer, G., Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death (1995) Cell Death Differ, 2, pp. 163-171
  • Keppler, O.T., Peter, M.E., Hinderlich, S., Moldenhauer, G., Stehling, P., Schmitz, I., Differential sialylation of cell surface glycoconjugates in a human B lymphoma cell line regulates susceptibility for CD95 (APO-1/Fas)-mediated apoptosis and for infection by a lymphotropic virus (1999) Glycobiology, 9, pp. 557-569
  • Swindall, A.F., Bellis, S.L., Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells (2011) J Biol Chem, 286, pp. 22982-22990
  • Schneider, P., Bodmer, J.L., Holler, N., Mattmann, C., Scuderi, P., Terskikh, A., Characterization of Fas (Apo-1, CD95)-Fas ligand interaction (1997) J Biol Chem, 272, pp. 18827-18833
  • Abrahams, V.M., Straszewski, S.L., Kamsteeg, M., Hanczaruk, B., Schwartz, P.E., Rutherford, T.J., Epithelial ovarian cancer cells secrete functional Fas ligand (2003) Cancer Res, 63, pp. 5573-5581
  • Rabinovich, G.A., Ilarregui, J.M., Conveying glycan information into T-cell homeostatic programs: A challenging role for galectin-1 in inflammatory and tumor microenvironments (2009) Immunol Rev, 230, pp. 144-159
  • Matarrese, P., Tinari, A., Mormone, E., Bianco, G.A., Toscano, M.A., Ascione, B., Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission (2005) J Biol Chem, 280, pp. 6969-6985
  • Liu, Z., Swindall, A.F., Kesterson, R.A., Schoeb, T.R., Bullard, D.C., Bellis, S.L., ST6Gal-I regulates macrophage apoptosis via a2-6 sialylation of the TNFR1 death receptor (2011) J Biol Chem, 286, pp. 39654-43962
  • Fukumori, T., Takenaka, Y., Oka, N., Yoshii, T., Hogan, V., Inohara, H., Endogenous galectin-3 determines the routing of CD95 apoptotic signaling pathways (2004) Cancer Res, 64, pp. 3376-3379
  • Oka, N., Nakahara, S., Takenaka, Y., Fukumori, T., Hogan, V., Kanayama, H.O., Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells (2005) Cancer Res, 65, pp. 7546-7553
  • Lee, Y.J., Song, Y.K., Song, J.J., Siervo-Sassi, R.R., Kim, H.R., Li, L., Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt (2003) Exp Cell Res, 288, pp. 21-34
  • Wells, V., Mallucci, L., Phosphoinositide 3-kinase targeting by the beta galactoside binding protein cytokine negates akt gene expression and leads aggressive breast cancer cells to apoptotic death (2009) Breast Cancer Res, 11, pp. R2
  • Mazurek, N., Byrd, J.C., Sun, Y., Hafley, M., Ramirez, K., Burks, J., Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells (2012) Cell Death Differ, 19, pp. 523-533
  • Mazurek, N., Conklin, J., Byrd, J.C., Raz, A., Bresalier, R.S., Phosphorylation of the betagalactoside- binding protein galectin-3 modulates binding to its ligands (2000) J Biol Chem, 275, pp. 36311-36315
  • Mazurek, N., Sun, Y.J., Liu, K.F., Gilcrease, M.Z., Schober, W., Nangia-Makker, P., Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells (2007) J Biol Chem, 282, pp. 21337-21348
  • Pace, K.E., Lee, C., Stewart, P.L., Baum, L.G., Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1 (1999) J Immunol, 163, pp. 3801-3811
  • Desharnais, P., Dupéré-Minier, G., Hamelin, C., Devine, P., Bernier, J., Involvement of CD45 in DNA fragmentation in apoptosis induced by mitochondrial perturbing agents (2008) Apoptosis, 13, pp. 197-212
  • Rabinovich, G.A., Ramhorst, R.E., Rubinstein, N., Corigliano, A., Daroqui, M.C., Kier-Joffé, E.B., Induction of allogenic T-cell hyporesponsiveness by galectin-1-mediated apoptotic and nonapoptotic mechanisms (2002) Cell Death Differ, 9, pp. 661-670
  • Hahn, H.P., Pang, M., He, J., Hernandez, J.D., Yang, R.Y., Li, L.Y., Galectin-1 induces nuclear translocation of endonuclease G in caspase- and cytochrome c-independent T cell death (2004) Cell Death Differ, 11, pp. 1277-1286
  • Ion, G., Fajka-Boja, R., Tóth, G.K., Caron, M., Monostori, E., Role of p56lck and ZAP70- mediated tyrosine phosphorylation in galectin-1-induced cell death (2005) Cell Death Differ, 12, pp. 1145-1147
  • Rabinovich, G.A., Alonso, C.R., Sotomayor, C.E., Durand, S., Bocco, J.L., Riera, C.M., Molecular mechanisms implicated in galectin-1-induced apoptosis: Activation of the AP-1 transcription factor and downregulation of Bcl-2 (2000) Cell Death Differ, 7, pp. 747-753
  • Brandt, B., Abou-Eladab, E.F., Tiedge, M., Walzel, H., Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death (2010) Cell Death Dis, 1, pp. e23
  • Nguyen, J.T., Evans, D.P., Galvan, M., Pace, K.E., Leitenberg, D., Bui, T.N., CD45 modulates galectin-1-induced T cell death: Regulation by expression of core 2 O-glycans (2001) J Immunol, 167, pp. 5697-5707
  • Earl, L.A., Bi, S., Baum, L.G., N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death (2010) J Biol Chem, 285, pp. 2232-2244
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Croci, D.O., Correale, J., Hernandez, J.D., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat Immunol, 8, pp. 825-834
  • Fulcher, J.A., Chang, M.H., Wang, S., Almazan, T., Hashimi, S.T., Eriksson, A.U., Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling (2009) J Biol Chem, 284, pp. 26860-26870
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernandez, S.F., Galectin-1 deactivates classically activated microglia and protects from inflammationinduced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • Van Dyken, S.J., Green, R.S., Marth, J.D., Structural and mechanistic features of protein O glycosylation linked to CD8+ T-cell apoptosis (2007) Mol Cell Biol, 27, pp. 1096-1111
  • Van Vliet, S.J., Gringhuis, S.I., Geijtenbeek, T.B., Van Kooyk, Y., Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45 (2006) Nat Immunol, 7, pp. 1200-1208
  • Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H.R., Hogan, V., Inohara, H., CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis (2003) Cancer Res, 63, pp. 8302-8311
  • Stillman, B.N., Hsu, D.K., Pang, M., Brewer, C.F., Johnson, P., Liu, F.T., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) J Immunol, 176, pp. 778-789
  • Yu, F., Finley Jr., R.L., Raz, A., Kim, H.R., Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation (2002) J Biol Chem, 277, pp. 15819-15827
  • Zhuo, Y., Chammas, R., Bellis, S.L., Sialylation of beta1 integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis (2008) J Biol Chem, 283, pp. 22177-22185
  • Cohen, M., Elkabets, M., Perlmutter, M., Porgador, A., Voronov, E., Apte, R.N., Sialylation of 3-methylcholanthrene-induced fibrosarcoma determines antitumor immune responses during immunoediting (2010) J Immunol, 185, pp. 5869-5878
  • Eshkar Sebban, L., Ronen, D., Levartovsky, D., Elkayam, O., Caspi, D., Aamar, S., The involvement of CD44 and its novel ligand galectin-8 in apoptotic regulation of autoimmune inflammation (2007) J Immunol, 179, pp. 1225-1235
  • Rabinovich, G.A., Toscano, M.A., Turning 'sweet' on immunity: Galectin-glycan interactions in immune tolerance and inflammation (2009) Nat Rev Immunol, 9, pp. 338-352
  • Zhu, C., Anderson, A.C., Schubart, A., Xiong, H., Imitola, J., Khoury, S.J., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat Immunol, 6, pp. 1245-1252
  • Kashio, Y., Nakamura, K., Abedin, M.J., Seki, M., Nishi, N., Yoshida, N., Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway (2003) J Immunol, 170, pp. 3631-3636
  • Lu, L.H., Nakagawa, R., Kashio, Y., Ito, A., Shoji, H., Nishi, N., Characterization of galectin-9- induced death of Jurkat T cells (2007) J Biochem, 141, pp. 157-172
  • Rangachari, M., Zhu, C., Sakuishi, K., Xiao, S., Karman, J., Chen, A., Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion (2012) Nat Med, 18, pp. 1394-1400
  • Cao, E., Zang, X., Ramagopal, U.A., Mukhopadhaya, A., Fedorov, A., Fedorov, E., T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface (2007) Immunity, 26, pp. 311-321
  • Gupta, S., Thornley, T.B., Gao, W., Larocca, R., Turka, L.A., Kuchroo, V.K., Allograft rejection is restrained by short-lived TIM-3+PD-1+Foxp3+ Tregs (2012) J Clin Invest, 122, pp. 2395-2404
  • Sturm, A., Lensch, M., André, S., Kaltner, H., Wiedenmann, B., Rosewicz, S., Human galectin-2: Novel inducer of T cell apoptosis with distinct profile of caspase activation (2004) J Immunol, 173, pp. 3825-3837
  • Paclik, D., Danese, S., Berndt, U., Wiedenmann, B., Dignass, A., Sturm, A., Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle (2008) PLoS One, 3, pp. e2629
  • Maiuri, M.C., Zalckvar, E., Kimchi, A., Kroemer, G., Self-eating and self-killing: Crosstalk between autophagy and apoptosis (2007) Nat Rev Mol Cell Biol, 8, pp. 741-752
  • Kuwabara, I., Kuwabara, Y., Yang, R.Y., Schuler, M., Green, D.R., Zuraw, B.L., Galectin-7 (PIG1) exhibits pro-apoptotic function through JNK activation and mitochondrial cytochrome c release (2002) J Biol Chem, 277, pp. 3487-3497
  • Bernerd, F., Sarasin, A., Magnaldo, T., Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes (1999) Proc Natl Acad Sci USA, 96, pp. 11329-21134
  • Villeneuve, C., Baricault, L., Canelle, L., Barboule, N., Racca, C., Monsarrat, B., Mitochondrial proteomic approach reveals galectin-7 as a novel BCL-2 binding protein in human cells (2011) Mol Biol Cell, 22, pp. 999-1013
  • Yang, R.Y., Hsu, D.K., Liu, F.T., Expression of galectin-3 modulates T-cell growth and apoptosis (1996) Proc Natl Acad Sci USA, 93, pp. 6737-6742
  • Oltvai, Z.N., Milliman, C.L., Korsmeyer, S.J., Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death (1993) Cell, 74, pp. 609-619
  • Li, X., Ma, Q., Wang, J., Liu, X., Yang, Y., Zhao, H., C-Abl and Arg tyrosine kinases regulate lysosomal degradation of the oncoprotein Galectin-3 (2010) Cell Death Differ, 17, pp. 1277-1287
  • Yogalingam, G., Pendergast, A.M., Abl kinases regulate autophagy by promoting the trafficking and function of lysosomal components (2008) J Biol Chem, 283, pp. 35941-35953
  • Hutchins, M.U., Klionsky, D.J., Vacuolar localization of oligomeric alpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae (2001) J Biol Chem, 276, pp. 20491-20498
  • Suzuki, K., Kondo, C., Morimoto, M., Ohsumi, Y., Selective transport of alpha-mannosidase by autophagic pathways: Identification of a novel receptor, Atg34p (2010) J Biol Chem, 285, pp. 30019-30025
  • Watanabe, Y., Noda, N.N., Kumeta, H., Suzuki, K., Ohsumi, Y., Inagaki, F., Selective transport of alpha-mannosidase by autophagic pathways: Structural basis for cargo recognition by Atg19 and Atg34 (2010) J Biol Chem, 285, pp. 30026-30033
  • Gabel, C.A., Goldberg, D.E., Kornfeld, S., Lysosomal enzyme oligosaccharide phosphorylation in mouse lymphoma cells: Specificity and kinetics of binding to the mannose 6-phosphate receptor in vivo (1982) J Cell Biol, 95, pp. 536-542
  • Kollmann, K., Damme, M., Markmann, S., Morelle, W., Schweizer, M., Hermans-Borgmeyer, I., Lysosomal dysfunction causes neurodegeneration in mucolipidosis II 'knock-in' mice (2012) Brain, 135, pp. 2661-2675
  • Thurston, T.L., Wandel, M.P., Von Muhlinen, N., Foeglein, A., Randow, F., Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion (2012) Nature, 482, pp. 414-418
  • Li, S., Wandel, M.P., Li, F., Liu, Z., He, C., Wu, J., Sterical hindrance promotes selectivity of the autophagy cargo receptor NDP52 for the danger receptor galectin-8 in antibacterial autophagy (2013) Sci Signal, 6, pp. ra9
  • Molinari, M., Calanca, V., Galli, C., Lucca, P., Paganetti, P., Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle (2003) Science, 299, pp. 1397-1400
  • Oda, Y., Hosokawa, N., Wada, I., Nagata, K., EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin (2003) Science, 299, pp. 1394-1397
  • Gu, F., Nguyên, D.T., Stuible, M., Dubé, N., Tremblay, M.L., Chevet, E., Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress (2004) J Biol Chem, 279, pp. 49689-49693
  • Lin, J.H., Li, H., Yasumura, D., Cohen, H.R., Zhang, C., Panning, B., IRE1 signaling affects cell fate during the unfolded protein response (2007) Science, 318, pp. 944-949
  • Lazar, C., Macovei, A., Petrescu, S., Branza-Nichita, N., Activation of ERAD pathway by human hepatitis B virus modulates viral and subviral particle production (2012) PLoS One, 7, pp. e34169
  • Smits, P., Bolton, A.D., Funari, V., Hong, M., Boyden, E.D., Lu, L., Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210 (2010) N Engl J Med, 362, pp. 206-216
  • Barr, F.A., Short, B., Golgins in the structure and dynamics of the Golgi apparatus (2003) Curr Opin Cell Biol, 15, pp. 405-413
  • Maag, R.S., Mancini, M., Rosen, A., Machamer, C.E., Caspase-resistant Golgin-160 disrupts apoptosis induced by secretory pathway stress and ligation of death receptors (2005) Mol Biol Cell, 16, pp. 3019-3027
  • Mukherjee, S., Chiu, R., Leung, S.M., Shields, D., Fragmentation of the Golgi apparatus: An early apoptotic event independent of the cytoskeleton (2007) Traffic, 8, pp. 369-378
  • Lauber, K., Bohn, E., Krober, S.M., Xiao, Y.J., Blumenthal, S.G., Lindemann, R.K., Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal (2003) Cell, 113, pp. 717-730
  • Sano, H., Hsu, D.K., Yu, L., Apgar, J.R., Kuwabara, I., Yamanaka, T., Human galectin-3 is a novel chemoattractant for monocytes and macrophages (2000) J Immunol, 165, pp. 2156-2164
  • Sano, H., Hsu, D.K., Apgar, J.R., Yu, L., Sharma, B.B., Kuwabara, I., Critical role of galectin-3 in phagocytosis by macrophages (2003) J Clin Invest, 112, pp. 3893-3897
  • Fernández, G.C., Ilarregui, J.M., Rubel, C.J., Toscano, M.A., Gómez, S.A., Beigier Bompadre, M., Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: Involvement of alternative MAPK pathways (2005) Glycobiology, 15, pp. 519-527
  • Bournazou, I., Pound, J.D., Duffin, R., Bournazos, S., Melville, L.A., Brown, S.B., Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin (2009) J Clin Invest, 119, pp. 20-32
  • Britigan, B.E., Serody, J.S., Hayek, M.B., Charniga, L.M., Cohen, M.S., Uptake of lactoferrin by mononuclear phagocytes inhibits their ability to form hydroxyl radical and protects them from membrane autoperoxidation (1991) J Immunol, 147, pp. 4271-4277
  • Shiratsuchi, A., Watanabe, I., Ju, J.S., Lee, B.L., Nakanishi, Y., Bridging effect of recombinant human mannose-binding lectin in macrophage phagocytosis of Escherichia coli (2008) Immunology, 124, pp. 575-583
  • Schagat, T.L., Wofford, J.A., Wright, Jr., Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils (2001) J Immunol, 166, pp. 2727-2733
  • Litvack, M.L., Palaniyar, N., Review: Soluble innate immune pattern-recognition proteins for clearing dying cells and cellular components: Implications on exacerbating or resolving inflammation (2010) Innate Immun, 16, pp. 191-200
  • Caberoy, N.B., Alvarado, G., Bigcas, J.L., Li, W., Galectin-3 is a new MerTK-specific eat-me signal (2012) J Cell Physiol, 227, pp. 401-407
  • Dias-Baruffi, M., Zhu, H., Cho, M., Karmakar, S., McEver, R.P., Cummings, R.D., Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis (2003) J Biol Chem, 278, pp. 41282-41293
  • Stowell, S.R., Arthur, C.M., Slanina, K.A., Horton, J.R., Smith, D.F., Cummings, R.D., Dimeric Galectin-8 induces phosphatidylserine exposure in leukocytes through polylactosamine recognition by the C-terminal domain (2008) J Biol Chem, 283, pp. 20547-20559
  • Stowell, S.R., Karmakar, S., Arthur, C.M., Ju, T., Rodrigues, L.C., Riul, T.B., Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane (2009) Mol Biol Cell, 20, pp. 1408-1418
  • Fadok, V.A., Bratton, D.L., Frasch, S.C., Warner, M.L., Henson, P.M., The role of phosphatidylserine in recognition of apoptotic cells by phagocytes (1998) Cell Death Differ, 5, pp. 551-562
  • Arur, S., Uche, U.E., Rezaul, K., Fong, M., Scranton, V., Cowan, A.E., Annexin i is an endogenous ligand that mediates apoptotic cell engulfment (2003) Dev Cell, 4, pp. 587-598
  • Maugeri, N., Rovere-Querini, P., Evangelista, V., Covino, C., Capobianco, A., Bertilaccio, M.T., Neutrophils phagocytose activated platelets in vivo: A phosphatidylserine, P-selectin, and {beta}2 integrin-dependent cell clearance program (2009) Blood, 113, pp. 5254-5265
  • Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A., Nagata, S., Identification of a factor that links apoptotic cells to phagocytes (2002) Nature, 417, pp. 182-187
  • Hanayama, R., Tanaka, M., Miyasaka, K., Aozasa, K., Koike, M., Uchiyama, Y., Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice (2004) Science, 304, pp. 1147-1150
  • Toda, S., Hanayama, R., Nagata, S., Two-step engulfment of apoptotic cells (2012) Mol Cell Biol, 32, pp. 118-125
  • Pang, M., He, J., Johnson, P., Baum, L.G., CD45-mediated fodrin cleavage during galectin-1 T cell death promotes phagocytic clearance of dying cells (2009) J Immunol, 182, pp. 7001-7008
  • Watanabe, Y., Shiratsuchi, A., Shimizu, K., Takizawa, T., Nakanishi, Y., Role of phosphatidylserine exposure and sugar chain desialylation at the surface of influenza virus-infected cells in efficient phagocytosis by macrophages (2002) J Biol Chem, 277, pp. 18222-18228
  • Meesmann, H.M., Fehr, E.M., Kierschke, S., Herrmann, M., Bilyy, R., Heyder, P., Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes (2010) J Cell Sci, 123, pp. 3347-3356
  • Rapoport, E., Khaidukov, S., Baidina, O., Bojenko, V., Moiseeva, E., Pasynina, G., Involvement of the Galbeta1-3GalNAcbeta structure in the recognition of apoptotic bodies by THP-1 cells (2003) Eur J Cell Biol, 82, pp. 295-302
  • Eda, S., Yamanaka, M., Beppu, M., Carbohydrate-mediated phagocytic recognition of early apoptotic cells undergoing transient capping of CD43 glycoprotein (2004) J Biol Chem, 279, pp. 5967-5974
  • Ise, H., Goto, M., Komura, K., Akaike, T., Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin (2012) Glycobiology, 22, pp. 788-805
  • Rapoport, E.M., Sapot'Ko, Y.B., Pazynina, G.V., Bojenko, V.K., Bovin, N.V., Sialoside-binding macrophage lectins in phagocytosis of apoptotic bodies (2005) Biochemistry (Mosc), 70, pp. 330-338
  • Weck, M.M., Appel, S., Werth, D., Sinzger, C., Bringmann, A., Grunebach, F., HDectin-1 is involved in uptake and cross-presentation of cellular antigens (2008) Blood, 111, pp. 4264-4272
  • Carlin, A.F., Chang, Y.C., Areschoug, T., Lindahl, G., Hurtado-Ziola, N., King, C.C., Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5 (2009) J Exp Med, 206, pp. 1691-1699
  • Wang, Y., Neumann, H., Alleviation of neurotoxicity by microglial human Siglec-11 (2010) J Neurosci, 30, pp. 3482-3488
  • Paessens, L.C., Fluitsma, D.M., Van Kooyk, Y., Haematopoietic antigen-presenting cells in the human thymic cortex: Evidence for a role in selection and removal of apoptotic thymocytes (2008) J Pathol, 214, pp. 96-103
  • Majai, G., Gogolák, P., Ambrus, C., Vereb, G., Hodrea, J., Fésus, L., PPARg modulated inflammatory response of human dendritic cell subsets to engulfed apoptotic neutrophils (2010) J Leukoc Biol, 88, pp. 981-991

Citas:

---------- APA ----------
Lichtenstein, R.G. & Rabinovich, G.A. (2013) . Glycobiology of cell death: When glycans and lectins govern cell fate. Cell Death and Differentiation, 20(8), 976-986.
http://dx.doi.org/10.1038/cdd.2013.50
---------- CHICAGO ----------
Lichtenstein, R.G., Rabinovich, G.A. "Glycobiology of cell death: When glycans and lectins govern cell fate" . Cell Death and Differentiation 20, no. 8 (2013) : 976-986.
http://dx.doi.org/10.1038/cdd.2013.50
---------- MLA ----------
Lichtenstein, R.G., Rabinovich, G.A. "Glycobiology of cell death: When glycans and lectins govern cell fate" . Cell Death and Differentiation, vol. 20, no. 8, 2013, pp. 976-986.
http://dx.doi.org/10.1038/cdd.2013.50
---------- VANCOUVER ----------
Lichtenstein, R.G., Rabinovich, G.A. Glycobiology of cell death: When glycans and lectins govern cell fate. Cell Death Differ. 2013;20(8):976-986.
http://dx.doi.org/10.1038/cdd.2013.50