Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Yeast cells can use γ-aminobutyric acid (GABA), a non-protein amino acid, as a nitrogen source that is mainly imported by the permease Uga4 and catabolized by the enzymes GABA transaminase and succinate-semialdehyde dehydrogenase, encoded by the UGA1 and UGA2 genes, respectively. The three UGA genes are inducible by GABA and subject to nitrogen catabolite repression. Hence, their regulation occurs through two mechanisms, one dependent on the inducer and the other on nitrogen source quality. The aim of this work was to better understand the molecular mechanisms of transcription factors acting on different regulatory elements present in UGA promoters, such as Uga3, Dal81, Leu3 and the GATA factors, and to establish the mechanism of the concerted action between them. We found that Gat1 plays an important role in the induction of UGA4 transcription by GABA and that Gzf3 has an effect in cells grown in a poor nitrogen source such as proline and that this effect is positive on UGA4 expression. We also found that Gln3 and Dal80 affect the interaction of Uga3 and Dal81 on UGA promoters. Moreover, our results indicated that the repressing activity of Leu3 on UGA4 and UGA1 occurs through Dal80 since we demonstrated that Leu3 facilitates Dal80 interaction with DNA. However, when the expression of GATA factors is null or negligible, Leu3 functions as an activator. © 2017 The Authors.

Registro:

Documento: Artículo
Título:Unravelling the transcriptional regulation of saccharomyces cerevisiae UGA genes: The dual role of transcription factor leu3
Autor:Palavecino-Ruiz, M.; Bermudez-Moretti, M.; Correa-Garcia, S.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
Palabras clave:GABA; GATA factors; Leu3; Saccharomyces cerevisiae; Transcription; UGA genes; 4 aminobutyric acid; Dal80 protein; GABA transporter 1; Gzf3 protein; nitrogen; proline; protein; succinate semialdehyde dehydrogenase; succinate semialdehyde dehydrogenase UGA; succinate semialdehyde dehydrogenase UGA3; succinate semialdehyde dehydrogenase UGA4; transcription factor; transcription factor Leu3; unclassified drug; 4 aminobutyric acid; 4 aminobutyric acid carrier; DAL80 protein, S cerevisiae; DAL81 protein, S cerevisiae; GLN3 protein, S cerevisiae; LEU3 protein, S cerevisiae; repressor protein; Saccharomyces cerevisiae protein; transactivator protein; transcription factor; transcription factor GATA; UGA4 protein, S cerevisiae; Article; cell growth; controlled study; fungal cell; gene expression; nonhuman; priority journal; promoter region; protein function; protein protein interaction; Saccharomyces cerevisiae; transcription initiation; transcription regulation; gene expression regulation; gene regulatory network; genetics; metabolism; Saccharomyces cerevisiae; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; GATA Transcription Factors; Gene Expression Regulation, Fungal; Gene Regulatory Networks; Promoter Regions, Genetic; Repressor Proteins; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Trans-Activators; Transcription Factors
Año:2017
Volumen:163
Número:11
Página de inicio:1692
Página de fin:1701
DOI: http://dx.doi.org/10.1099/mic.0.000560
Título revista:Microbiology (United Kingdom)
Título revista abreviado:Microbiology
ISSN:13500872
CODEN:MROBE
CAS:4 aminobutyric acid, 28805-76-7, 56-12-2; nitrogen, 7727-37-9; proline, 147-85-3, 7005-20-1; protein, 67254-75-5; succinate semialdehyde dehydrogenase, 9028-95-9; DAL80 protein, S cerevisiae; DAL81 protein, S cerevisiae; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; GATA Transcription Factors; GLN3 protein, S cerevisiae; LEU3 protein, S cerevisiae; Repressor Proteins; Saccharomyces cerevisiae Proteins; Trans-Activators; Transcription Factors; UGA4 protein, S cerevisiae
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13500872_v163_n11_p1692_PalavecinoRuiz

Referencias:

  • Ljungdahl, P.O., Daignan-Fornier, B., Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae (2012) Genetics, 190, pp. 885-929
  • Cooper, T.G., Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: Connecting the dots (2002) FEMS Microbiol Rev, 26, pp. 223-238
  • Georis, I., Feller, A., Vierendeels, F., Dubois, E., The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repressionsensitive gene activation (2009) Mol Cell Biol, 29, pp. 3803-3815
  • Ramos, F., El Guezzar, M., Grenson, M., Wiame, J.M., Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae (1985) Eur J Biochem, 149, pp. 401-404
  • André, B., The UGA3 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae codes for a putative zinc-finger protein acting on RNA amount (1990) Mol Gen Genet, 220, pp. 269-276
  • André, B., Talibi, D., Soussi Boudekou, S., Hein, C., Vissers, S., Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5’-GAT(A/T)A-3’ upstream from the UGA4 gene of Saccharomyces cerevisiae (1995) Nucleic Acids Res, 23, pp. 558-564
  • Cunningham, T.S., Dorrington, R.A., Cooper, T.G., The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae (1994) J Bacteriol, 176, pp. 4718-4725
  • Talibi, D., Grenson, M., Ré, B., Cis-and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae (1995) Nucleic Acids Res, 23, pp. 550-557
  • Vissers, S., Re, B., Muyldermans, F., Grenson, M., Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae (1989) Eur J Biochem, 181, pp. 357-361
  • Cardillo, S.B., Correa García, S., Bermúdez Moretti, M., Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces cerevisiae (2011) Biochem Biophys Res Commun, 410, pp. 885-889
  • Cardillo, S.B., Bermúdez Moretti, M., Correa García, S., Uga3 and Uga35/Dal81 transcription factors regulate UGA4 transcription in response to gamma-aminobutyric acid and leucine (2010) Eukaryot Cell, 9, pp. 1262-1271
  • Cardillo, S.B., Levi, C.E., Bermúdez Moretti, M., Correa García, S., Interplay between the transcription factors acting on the GATA-and GABA-responsive elements of Saccharomyces cerevisiae UGA promoters (2012) Microbiology, 158, pp. 925-935
  • Kohlhaw, G.B., Leucine biosynthesis in fungi: Entering metabolism through the back door (2003) Microbiol Mol Biol Rev, 67, pp. 1-15
  • Boer, V.M., Daran, J.M., Almering, M.J., De Winde, J.H., Pronk, J.T., Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen-and carbonlimited chemostat cultures (2005) FEMS Yeast Res, 5, pp. 885-897
  • Macpherson, S., Larochelle, M., Turcotte, B., A fungal family of transcriptional regulators: The zinc cluster proteins (2006) Microbiol Mol Biol Rev, 70, pp. 583-604
  • Coffman, J.A., Rai, R., Loprete, D.M., Cunningham, T., Svetlov, V., Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae (1997) J Bacteriol, 179, pp. 3416-3429
  • Coffman, J.A., Rai, R., Cunningham, T., Svetlov, V., Cooper, T.G., Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae (1996) Mol Cell Biol, 16, pp. 847-858
  • Daugherty, J.R., Rai, R., El Berry, H.M., Cooper, T.G., Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae (1993) J Bacteriol, 175, pp. 64-73
  • Levi, C.E., Cardillo, S.B., Bertotti, S., Ríos, C., Correa García, S., GABA induction of the Saccharomyces cerevisiae UGA4 gene depends on the quality of the carbon source: role of the key transcription factors acting in this process (2012) Biochem Biophys Res Commun, 421, pp. 572-577
  • Abdel-Sater, F., Iraqui, I., Urrestarazu, A., Ré, B., The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae (2004) Genetics, 166, pp. 1727-1739
  • Small, A.J., Todd, R.B., Zanker, M.C., Delimitrou, S., Hynes, M.J., Functional analysis of TamA, a coactivator of nitrogen-regulated gene expression in Aspergillus nidulans (2001) Mol Genet Genomics, 265, pp. 636-646
  • Polotnianka, R., Monahan, B.J., Hynes, M.J., Davis, M.A., TamA interacts with LeuB, the homologue of Saccharomyces cerevisiae Leu3p, to regulate gdhA expression in Aspergillus nidulans (2004) Mol Genet Genomics, 272, pp. 452-459
  • Davis, M.A., Small, A.J., Kourambas, S., Hynes, M.J., The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function (1996) J Bacteriol, 178, pp. 3406-3409
  • Downes, D.J., Davis, M.A., Kreutzberger, S.D., Taig, B.L., Todd, R.B., Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB (2013) Microbiology, 159, pp. 2467-2480
  • Wach, A., PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. Cerevisiae (1996) Yeast, 12, pp. 259-265
  • Wach, A., Brachat, A., Pöhlmann, R., Philippsen, P., New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae (1994) Yeast, 10, pp. 1793-1808
  • Longtine, M.S., McKenzie, A., Demarini, D.J., Shah, N.G., Wach, A., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae (1998) Yeast, 14, pp. 953-961
  • Goldstein, A.L., McCusker, J.H., Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae (1999) Yeast, 15, pp. 1541-1553
  • Christianson, T.W., Sikorski, R.S., Dante, M., Shero, J.H., Hieter, P., Multifunctional yeast high-copy-number shuttle vectors (1992) Gene, 110, pp. 119-122
  • Miller, J.H., (1972) Experiments in Molecular Genetics, p. 403. , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method (2001) Methods, 25, pp. 402-408
  • Medina-Rivera, A., Defrance, M., Sand, O., Herrmann, C., Castro-Mondragon, J.A., RSAT 2015: Regulatory sequence analysis tools (2015) Nucleic Acids Res, 43, pp. W50-W56
  • Teixeira, M.C., Monteiro, P.T., Guerreiro, J.F., Gonçalves, J.P., Mira, N.P., The YEASTRACT database: An upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae (2014) Nucleic Acids Res, 42, pp. D161-D166
  • Zhu, J., Zhang, M.Q., SCPD: A promoter database of the yeast Saccharomyces cerevisiae (1999) Bioinformatics, 15, pp. 607-611
  • Idicula, A.M., Blatch, G.L., Cooper, T.G., Dorrington, R.A., Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p (2002) J Biol Chem, 277, pp. 45977-45983
  • Georis, I., Feller, A., Tate, J.J., Cooper, T.G., Dubois, E., Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: The genetic background, reporter gene and GATA factor assayed determine the outcomes (2009) Genetics, 181, pp. 861-874
  • Luzzani, C., Cardillo, S.B., Bermúdez Moretti, M., Correa García, S., New insights into the regulation of the Saccharomyces cerevisiae UGA4 gene: Two parallel pathways participate in carbon-regulated transcription (2007) Microbiology, 153, pp. 3677-3684
  • Palavecino, M.D., Correa-García, S.R., Bermúdez-Moretti, M., Genes of different catabolic pathways are coordinately regulated by Dal81 in Saccharomyces cerevisiae (2015) J Amino Acids, 2015, pp. 1-8
  • Springael, J.Y., Penninckx, M.J., Nitrogen-source regulation of yeast gamma-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3 (2003) Biochem J, 371, pp. 589-595
  • Staschke, K.A., Dey, S., Zaborske, J.M., Palam, L.R., McClintick, J.N., Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast (2010) J Biol Chem, 285, pp. 16893-16911
  • André, B., Hein, C., Grenson, M., Jauniaux, J.C., Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae (1993) Mol Gen Genet, 237, pp. 17-25
  • Cunningham, T.S., Rai, R., Cooper, T.G., The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae (2000) J Bacteriol, 182, pp. 6584-6591
  • Soussi-Boudekou, S., Vissers, S., Urrestarazu, A., Jauniaux, J.C., Ré, B., Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae (1997) Mol Microbiol, 23, pp. 1157-1168
  • Georis, I., Tate, J.J., Cooper, T.G., Dubois, E., Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae (2008) J Biol Chem, 283, pp. 8919-8929
  • Magasanik, B., Kaiser, C.A., Nitrogen regulation in Saccharomyces cerevisiae (2002) Gene, 290, pp. 1-18
  • Bechet, J., Greenson, M., Wiame, J.M., Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae (1970) Eur J Biochem, 12, pp. 31-39
  • Grenson, M., 4-Aminobutyric acid (GABA) uptake in Baker’s yeast Saccharomyces cerevisiae is mediated by the general amino acid permease, the proline permease and a GABA specific permease integrated into the GABA-catabolic pathway (1987) Life Sci Adv Biochem, 6, pp. 35-39
  • Coornaert, D., Vissers, S., Ré, B., Grenson, M., The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper (1992) Curr Genet, 21, pp. 301-307

Citas:

---------- APA ----------
Palavecino-Ruiz, M., Bermudez-Moretti, M. & Correa-Garcia, S. (2017) . Unravelling the transcriptional regulation of saccharomyces cerevisiae UGA genes: The dual role of transcription factor leu3. Microbiology (United Kingdom), 163(11), 1692-1701.
http://dx.doi.org/10.1099/mic.0.000560
---------- CHICAGO ----------
Palavecino-Ruiz, M., Bermudez-Moretti, M., Correa-Garcia, S. "Unravelling the transcriptional regulation of saccharomyces cerevisiae UGA genes: The dual role of transcription factor leu3" . Microbiology (United Kingdom) 163, no. 11 (2017) : 1692-1701.
http://dx.doi.org/10.1099/mic.0.000560
---------- MLA ----------
Palavecino-Ruiz, M., Bermudez-Moretti, M., Correa-Garcia, S. "Unravelling the transcriptional regulation of saccharomyces cerevisiae UGA genes: The dual role of transcription factor leu3" . Microbiology (United Kingdom), vol. 163, no. 11, 2017, pp. 1692-1701.
http://dx.doi.org/10.1099/mic.0.000560
---------- VANCOUVER ----------
Palavecino-Ruiz, M., Bermudez-Moretti, M., Correa-Garcia, S. Unravelling the transcriptional regulation of saccharomyces cerevisiae UGA genes: The dual role of transcription factor leu3. Microbiology. 2017;163(11):1692-1701.
http://dx.doi.org/10.1099/mic.0.000560