Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation. © 2016 The Authors.


Documento: Artículo
Título:Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in pseudomonas aeruginosa
Autor:Pezzoni, M.; Tribelli, P.M.; Pizarro, R.A.; López, N.I.; Costa, C.S.
Filiación:Departamento de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
IQUIBICEN-CONICET-Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
Palabras clave:beta galactosidase; catalase; drinking water; enzyme; hydrogen peroxide; hypochlorite sodium; KatA enzyme; KatB enzyme; messenger RNA; polyacrylamide gel; reactive oxygen metabolite; unclassified drug; catalase; hydrogen peroxide; hypochlorite sodium; oxidizing agent; adaptation; Article; bacterial growth; chemoluminescence; disinfection; enzyme activity; native polyacrylamide gel electrophoresis; nonhuman; oxidative stress; priority journal; Pseudomonas aeruginosa; radiation dose; real time polymerase chain reaction; solar radiation; ultraviolet A radiation; gene expression regulation; genetics; metabolism; oxidation reduction reaction; physiology; Pseudomonas aeruginosa; radiation response; ultraviolet radiation; Adaptation, Physiological; Catalase; Gene Expression Regulation, Bacterial; Hydrogen Peroxide; Oxidants; Oxidation-Reduction; Oxidative Stress; Pseudomonas aeruginosa; Sodium Hypochlorite; Ultraviolet Rays
Página de inicio:855
Página de fin:864
Título revista:Microbiology (United Kingdom)
Título revista abreviado:Microbiology
CAS:beta galactosidase; catalase, 9001-05-2; hydrogen peroxide, 7722-84-1; hypochlorite sodium, 7681-52-9; Catalase; Hydrogen Peroxide; Oxidants; Sodium Hypochlorite


  • Aebi, H., Catalase in vitro (1984) Methods in Enzymology, pp. 121-126. , Edited by L. Parker. London: Academic Press
  • Bäumler, W., Regensburger, J., Knak, A., Felgenträger, A., Maisch, T., UVA and endogenous photosensitizers – the detection of singlet oxygen by its luminescence (2012) Photochem Photobiol Sci, 11, pp. 107-117
  • Berney, M., Weilenmann, H.-U., Egli, T., Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight (2006) Environ Microbiol, 8, pp. 1635-1647
  • Berney, M., Weilenmann, H.-U., Ihssen, J., Bassin, C., Egli, T., Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection (2006) Appl Environ Microbiol, 72, pp. 2586-2593
  • Brown, S.M., Howell, M.L., Vasil, M.L., Erson, A.J., Hassett, D.J., Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: Purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide (1995) J Bacteriol, 177, pp. 6536-6544
  • Cadenas, E., Sies, H., Low-level chemiluminescence as an indicador of singlet molecular oxygen in biological systems (1984) In Methods in Enzymology, pp. 221-231. , Edited by L. Parker. London: Academic Press
  • Cai, Y., Strømme, M., Welch, K., Disinfection, kinetics and contribution of reactive oxygen species when eliminating bacteria with TiO2 induced photocatalysis (2014) J Biomater Nanobiotechnol, 5, pp. 200-209
  • Chamberlain, J., Moss, S.H., Lipid peroxidation and other membrane damage produced in Escherichia coli K1060 by near-UV radiation and deuterium oxide (1987) Photochem Photobiol, 45, pp. 625-630
  • Chang, W., Small, D.A., Toghrol, F., Bentley, W.E., Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide (2005) BMC Genomics, 6, 115p
  • Costa, C.S., Pezzoni, M., Fernández, R.O., Pizarro, R.A., Role of the quorum sensing mechanism in the response of Pseudomonas aeruginosa to lethal and sublethal UVA irradiation (2010) Photochem Photobiol, 86, pp. 1334-1342
  • Eisenstark, A., Sensitivity of Salmonella typhimurium recombinationless (Rec) mutants to visible and near-visible light (1970) Mutat Res, 10, pp. 1-6
  • Eisenstark, A., Perrot, G., Catalase has only a minor role in protection against near-ultraviolet radiation damage in bacteria (1987) Mol Gen Genet, 207, pp. 68-72
  • Gamage, J., Zhang, Z., Applications of photocatalytic disinfection (2010) Int J Photoenergy, 2010
  • Girard, P.M., Francesconi, S., Pozzebon, M., Graindorge, D., Rochette, P., Drouin, R., Sage, E., UVA-induced damage to DNA and proteins: Direct versus indirect photochemical processes (2011) J Phys Conf Ser, 261
  • Hartman, P.S., In situ hydrogen peroxide production may account for a portion of NUV (300–400 nm) inactivation of stationary phase Escherichia coli (1986) Photochem Photobiol, 43, pp. 87-89
  • Hassett, D.J., Woodruff, W.A., Wozniak, D.J., Vasil, M.L., Cohen, M.S., Ohman, D.E., Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese- and iron-cofactored superoxide dismutase: Demonstration of increased manganese superoxide dismutase activity in alginate-producing bacteria (1993) J Bacteriol, 175, pp. 7658-7665
  • Hassett, D.J., Alsabbagh, E., Parvatiyar, K., Howell, M.L., Wilmott, R.W., Ochsner, U.A., A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities (2000) J Bacteriol, 182, pp. 4557-4563
  • Heo, Y.J., Chung, I.Y., Cho, W.J., Lee, B.Y., Kim, J.H., Choi, K.H., Lee, J.W., Cho, Y.H., The major catalase gene (KatA) of Pseudomonas aeruginosa PA14 is under both positive and negative control of the global transactivator OxyR in response to hydrogen peroxide (2010) J Bacteriol, 192, pp. 381-390
  • Hoerter, J., Eisenstark, A., Touati, D., Mutations by nearultraviolet radiation in Escherichia coli strains lacking superoxide dismutase (1989) Mutat Res, 215, pp. 161-165
  • Hoerter, J.D., Arnold, A.A., Kucczynska, D.A., Shibuya, A., Ward, C.S., Sauer, M.G., Gizachew, A., Fleming, T.J., Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and proteins oxidation in Escherichia coli (2005) J Photochem Photobiol B, 81, pp. 171-180
  • Hu, M.L., Tappel, A.L., Potentiation of oxidative damage to proteins by ultraviolet-A and protection by antioxidants (1992) Photochem Photobiol, 56, pp. 357-363
  • Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Raymond, C., Comprehensive transposon mutant library of Pseudomonas aeruginosa (2003) Proc Natl Acad Sci U S A, 100, pp. 14339-14344
  • Jiang, Y., Dong, Y., Luo, Q., Li, N., Wu, G., Gao, H., Protection from oxidative stress relies mainly on derepression of OxyRdependent KatB and Dps in Shewanella oneidensis (2014) J Bacteriol, 196, pp. 445-458
  • Khaengraeng, R., Reed, R.H., Oxygen and photoinactivation of Escherichia coli in UVA and sunlight (2005) J Appl Microbiol, 99, pp. 39-50
  • Kidambi, S.P., Booth, M.G., Kokjohn, T.A., Miller, R.V., RecA-dependence of the response of Pseudomonas aeruginosa to UVA and UVB irradiation (1996) Microbiology, 142, pp. 1033-1040
  • Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., II, Peterson, K.M., Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes (1995) Gene, 166, pp. 175-176
  • Kramer, G.F., Ames, B.N., Oxidative mechanisms of toxicity of low-intensity near-UV light in Salmonella typhimurium (1987) J Bacteriol, 169, pp. 2259-2266
  • Krych-Madej, J., Gebicka, L., Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification? (2015) Int J Biol Macromol, 80, pp. 162-169
  • Larionov, A., Krause, A., Miller, W., A standard curve based method for relative real time PCR data processing (2005) BMC Bioinformatics, 6, 62p
  • Lee, J.-S., Heo, Y.-J., Lee, J.K., Cho, Y.-H., KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14 (2005) Infect Immun, 73, pp. 4399-4403
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) J Biol Chem, 193, pp. 265-275
  • Ma, J.-F., Ochsner, U.A., Klotz, M.G., Nanayakkara, V.K., Howell, M.L., Johnson, Z., Posey, J.E., Hassett, D.J., Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa (1999) J Bacteriol, 181, pp. 3730-3742
  • Maatouk, K., Zaafrane, S., Gauthier, J.M., Bakhrouf, A., [Effect of previous culture conditions and the presence of the rpoS gene on the survival of Salmonella typhimurium in sea water exposed to sunlight] (2004) Can J Microbiol, 50, pp. 341-350. , French
  • Mashino, T., Fridovich, I., Reactions of hypochlorite with catalase (1988) Biochim Biophys Acta, 956, pp. 63-69
  • McDonald, L.C., Hackney, C.R., Ray, B., Enhanced recovery of injured Escherichia coli by compounds that degrade hydrogen peroxide or block its formation (1983) Appl Environ Microbiol, 45, pp. 360-365
  • McGuigan, K.G., Conroy, R.M., Mosler, H.J., Du Preez, M., Ubomba-Jaswa, E., Fernandez-Ibañez, P., Solar water disinfection (SODIS): A review from bench-top to roof-top (2012) J Hazard Mater, 235-236, pp. 29-46
  • Miller, J.H., (1972) Experiments in Molecular Genetics, , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
  • Miller, C.D., Mortensen, W.S., Braga, G.U.L., Anderson, A.J., The rpoS gene in Pseudomonas syringae is important in surviving exposure to the near-UV in sunlight (2001) Curr Microbiol, 43, pp. 374-377
  • Mossialos, D., Tavankar, G.R., Zlosnik, J.E., Williams, H.D., Defects in a quinol oxidase lead to loss of KatC catalase activity in Pseudomonas aeruginosa: KatC activity is temperature dependent and it requires an intact disulphide bond formation system (2006) Biochem Biophys Res Commun, 341, pp. 697-702
  • Ochsner, U.A., Vasil, M.L., Alsabbagh, E., Parvatiyar, K., Hassett, D.J., Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF (2000) J Bacteriol, 182, pp. 4533-4544
  • Pezzoni, M., Pizarro, R.A., Costa, C.S., Protective effect of low UVA irradiation against the action of lethal UVA on Pseudomonas aeruginosa: Role of the relA gene (2012) J Photochem Photobiol B, 116, pp. 95-104
  • Pezzoni, M., Pizarro, R.A., Costa, C.S., Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms (2014) J Photochem Photobiol B, 131, pp. 53-64
  • Pezzoni, M., Meichtry, M., Pizarro, R.A., Costa, C.S., Role of the Pseudomonas quinolone signal (PQS) in sensitising Pseudomonas aeruginosa to UVA radiation (2015) J Photochem Photobiol B, 142, pp. 129-140
  • Pizarro, R.A., UVA oxidative damage modified by environmental conditions in Escherichia coli (1995) Int J Radiat Biol, 68, pp. 293-299
  • Qiu, X., Sundin, G.W., Wu, L., Zhou, J., Tiedje, J.M., Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation (2005) J Bacteriol, 187, pp. 3556-3564
  • Sammartano, L.J., Tuveson, R.W., Davenport, R., Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the Escherichia coli katF locus (1986) J Bacteriol, 168, pp. 13-21
  • Sassoubre, L.M., Ramsey, M.M., Gilmore, M.S., Boehm, A.B., Transcriptional response of Enterococcus faecalis to sunlight (2014) J Photochem Photobiol B, 130, pp. 349-356
  • Shennan, M.G., Palmer, C.M., Schellhorn, H.E., Role of Fapy glycosylase and UvrABC excinuclease in the repair of UVA (320-400 nm)-mediated DNA damage in Escherichia coli (1996) Photochem Photobiol, 63, pp. 68-73
  • Small, D.A., Chang, W., Toghrol, F., Bentley, W.E., Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa (2007) Appl Microbiol Biotechnol, 74, pp. 176-185
  • Soule, T., Gao, Q., Stout, V., Garcia-Pichel, F., The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a temporal DNA microarray study (2013) Photochem Photobiol, 89, pp. 415-423
  • Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Kowalik, D.J., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen (2000) Nature, 406, pp. 959-964
  • Su, S., Panmanee, W., Wilson, J.J., Mahtani, H.K., Li, Q., Vanderwielen, B.D., Makris, T.M., McDaniel, C., Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa (2014) Plos One, 9
  • Tilbury, R.N., Quickenden, T.L., Spectral and time dependence studies of the ultraweak bioluminiscence emitted by the bacterium Escherichia coli (1988) Photochem Photobiol, 47, pp. 145-150
  • Tyrrell, R.M., A common pathway for protection of bacteria against damage by solar UVA (334 nm, 365 nm) and an oxidising agent (H2O2) (1985) Mutat Res, 145, pp. 129-136
  • Wayne, L.G., Diaz, G.A., A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels (1986) Anal Biochem, 157, pp. 89-92
  • Webb, R.B., Brown, M.S., Sensitivity of strains of Escherichia coli differing in repair capability to far UV, near UV and visible radiations (1976) Photochem Photobiol, 24, pp. 425-432
  • Wei, Q., Minh, P.N., Dösch, A., Hildebrand, F., Panmanee, W., Elfarash, A., Schulz, S., Charlier, D., Global regulation of gene expression by OxyR in an important human opportunistic pathogen (2012) Nucleic Acids Res, 40, pp. 4320-4333


---------- APA ----------
Pezzoni, M., Tribelli, P.M., Pizarro, R.A., López, N.I. & Costa, C.S. (2016) . Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in pseudomonas aeruginosa. Microbiology (United Kingdom), 162(5), 855-864.
---------- CHICAGO ----------
Pezzoni, M., Tribelli, P.M., Pizarro, R.A., López, N.I., Costa, C.S. "Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in pseudomonas aeruginosa" . Microbiology (United Kingdom) 162, no. 5 (2016) : 855-864.
---------- MLA ----------
Pezzoni, M., Tribelli, P.M., Pizarro, R.A., López, N.I., Costa, C.S. "Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in pseudomonas aeruginosa" . Microbiology (United Kingdom), vol. 162, no. 5, 2016, pp. 855-864.
---------- VANCOUVER ----------
Pezzoni, M., Tribelli, P.M., Pizarro, R.A., López, N.I., Costa, C.S. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in pseudomonas aeruginosa. Microbiology. 2016;162(5):855-864.