Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The probiotic Gram-positive bacterium Lactobacillus casei BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that L. casei BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, L. casei BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of D-alanyl-substitution. Analysis of the transcript levels of the dltABCD operon, encoding the enzymes required for the incorporation of D-alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in D-alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in L. casei BL23, the enzymic domain was cloned and expressed in E. coli. The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn2+-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both ltaS transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition. © 2013 SGM.

Registro:

Documento: Artículo
Título:Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid
Autor:Palomino, M.M.; Allievi, M.C.; Gründling, A.; Sanchez-Rivas, C.; Ruzal, S.M.
Filiación:Departamento de Química Biológica, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, London, United Kingdom
Palabras clave:bacterial enzyme; cation; dextro alanine; lipoteichoic acid; messenger RNA; phosphatidylglycerol; sodium chloride; teichoic acid; adaptation; article; bacterial cell wall; bacterial growth; binding affinity; biofilm; cloning; controlled study; enzyme activity; gene expression; hydrolysis; in vitro study; Lactobacillus casei; nonhuman; operon; osmotic stress; priority journal; protein purification; reduction; salt stress; substitution reaction; surface property; Adaptation, Physiological; Biofilms; Cations; Cell Wall; Culture Media; Gene Expression Profiling; Lactobacillus casei; Lipopolysaccharides; Osmotic Pressure; Protein Binding; Teichoic Acids
Año:2013
Volumen:159
Número:PART11
Página de inicio:2416
Página de fin:2426
DOI: http://dx.doi.org/10.1099/mic.0.070607-0
Título revista:Microbiology (United Kingdom)
Título revista abreviado:Microbiology
ISSN:13500872
CODEN:MROBE
CAS:lipoteichoic acid, 56411-57-5; sodium chloride, 7647-14-5; teichoic acid, 9041-38-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13500872_v159_nPART11_p2416_Palomino

Referencias:

  • Allievi, M.C., Sabbione, F., Prado-Acosta, M., Palomino, M.M., Ruzal, S.M., Sanchez-Rivas, C., Metal biosorption by surface-layer proteins from Bacillus species (2011) J Microbiol Biotechnol, 21, pp. 147-153
  • Billot-Klein, D., Legrand, R., Schoot, B., van Heijenoort, J., Gutmann, L., Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics (1997) J Bacteriol, 179, pp. 6208-6212
  • Clemans, D.L., Kolenbrander, P.E., Debabov, D.V., Zhang, Q., Lunsford, R.D., Sakone, H., Whittaker, C.J., Neuhaus, F.C., Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations (1999) Infect Immun, 67, pp. 2464-2474
  • Crow, V.L., Coolbear, T., Gopal, P.K., Martley, F.G., McKay, L.L., Riepe, H., The role of autolysis of lactic acid bacteria in the ripening of cheese (1995) Int Dairy J, 5, pp. 855-875
  • Debabov, D.V., Heaton, M.P., Zhang, Q., Stewart, K.D., Lambalot, R.H., Neuhaus, F.C., The D-alanyl carrier protein in Lactobacillus casei: Cloning, sequencing, and expression of dltC (1996) J Bacteriol, 178, pp. 3869-3876
  • Ellwood, D.C., Tempest, D.W., Influence of culture pH on the content and composition of teichoic acids in the walls of Bacillus subtilis (1972) J Gen Microbiol, 73, pp. 395-402
  • Fischer, W., Mannsfeld, T., Hagen, G., On the basic structure of poly(glycerophosphate) lipoteichoic acids (1990) Biochem Cell Biol, 68, pp. 33-43
  • Fox, P.F., Wallace, J.M., Morgan, S., Lynch, C.M., Niland, E.J., Tobin, J., Acceleration of cheese ripening (1996) Antonie van Leeuwenhoek, 70, pp. 271-297
  • Gründling, A., Schneewind, O., Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus (2007) Proc Natl Acad Sci U S A, 104, pp. 8478-8483
  • Hyyrylainen, H.L., Vitikainen, M., Thwaite, J., Wu, H., Sarvas, M., Harwood, C.R., Kontinen, V.P., Stephenson, K., D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis (2000) J Biol Chem, 275, pp. 26696-26703
  • Karatsa-Dodgson, M., Wörmann, M.E., Gründling, A., In vitro analysis of the Staphylococcus aureus lipoteichoic acid synthase enzyme using fluorescently labeled lipids (2010) J Bacteriol, 192, pp. 5341-5349
  • Kets, E., Teunissen, P., de Bont, J., Effect of compatible solutes on survival of lactic acid bacteria subjected to drying (1996) Appl Environ Microbiol, 62, pp. 259-261
  • Kiriukhin, M.Y., Neuhaus, F.C., D-alanylation of lipoteichoic acid: Role of the D-alanyl carrier protein in acylation (2001) J Bacteriol, 183, pp. 2051-2058
  • Koch, S., Oberson, G., Eugster-Meier, E., Meile, L., Lacroix, C., Osmotic stress induced by salt increases cell yield, autolytic activity, and survival of lyophilization of Lactobacillus delbrueckii subsp. lactis (2007) Int J Food Microbiol, 117, pp. 36-42
  • Koprivnjak, T., Mlakar, V., Swanson, L., Fournier, B., Peschel, A., Weiss, J.P., Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus (2006) J Bacteriol, 188, pp. 3622-3630
  • Kunst, A., Draeger, B., Ziegenhorn, J., VI. Metabolites 1: Carbohydrates (1984) Methods of Enzymatic Analysis, pp. 163-172. , In, 3rd edn. Weinheim: Verlag Chemie
  • Lambert, P.A., Hancock, I.C., Baddiley, J., Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids (1975) Biochem J, 151, pp. 671-676
  • Lebeer, S., Verhoeven, T.L., Perea Vélez, M., Vanderleyden, J., De Keersmaecker, S.C., Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG (2007) Appl Environ Microbiol, 73, pp. 6768-6775
  • Lebeer, S., Vanderleyden, J., De Keersmaecker, S.C., Genes and molecules of lactobacilli supporting probiotic action (2008) Microbiol Mol Biol Rev, 72, pp. 728-764
  • Lebeer, S., Claes, I.J.J., Vanderleyden, J., Antiinflammatory potential of probiotics: Lipoteichoic acid makes a difference (2012) Trends Microbiol, 20, pp. 5-10
  • López, C.S., Heras, H., Garda, H., Ruzal, S., Sánchez-Rivas, C., Rivas, E., Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress (2000) Int J Food Microbiol, 55, pp. 137-142
  • Lu, D., Wörmann, M.E., Zhang, X., Schneewind, O., Gründling, A., Freemont, P.S., Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS (2009) Proc Natl Acad Sci U S A, 106, pp. 1584-1589
  • MacArthur, A.E., Archibald, A.R., Effect of culture pH on the D-alanine ester content of lipoteichoic acid in Staphylococcus aureus (1984) J Bacteriol, 160, pp. 792-793
  • Machado, M.C., López, C.S., Heras, H., Rivas, E.A., Osmotic response in Lactobacillus casei ATCC 393: Biochemical and biophysical characteristics of membrane (2004) Arch Biochem Biophys, 422, pp. 61-70
  • Mazé, A., Boël, G., Zúñiga, M., Bourand, A., Loux, V., Yebra, M.J., Monedero, V., Jacques, N., Complete genome sequence of the probiotic Lactobacillus casei strain BL23 (2010) J Bacteriol, 192, pp. 2647-2648
  • Mohamadzadeh, M., Pfeiler, E.A., Brown, J.B., Zadeh, M., Gramarossa, M., Managlia, E., Bere, P., Khan, M.W., Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid (2011) Proc Natl Acad Sci U S A, 108 (SUPPL. 1), pp. 4623-4630
  • Morath, S., Geyer, A., Hartung, T., Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus (2001) J Exp Med, 193, pp. 393-397
  • Neuhaus, F.C., Baddiley, J., A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria (2003) Microbiol Mol Biol Rev, 67, pp. 686-723
  • O'Rourke, E.J., Chevalier, C., Boiteux, S., Labigne, A., Ielpi, L., Radicella, J.P., A novel 3-methyladenine DNA glycosylase from Helicobacter pylori defines a new class within the endonuclease III family of base excision repair glycosylases (2000) J Biol Chem, 275, pp. 20077-20083
  • Palomino, M.M., Sanchez-Rivas, C., Ruzal, S.M., High salt stress in Bacillus subtilis: Involvement of PBP4* as a peptidoglycan hydrolase (2009) Res Microbiol, 160, pp. 117-124
  • Palomino, M.M., Allievi, M.C., Prado-Acosta, M., Sanchez-Rivas, C., Ruzal, S.M., New method for electroporation of Lactobacillus species grown in high salt (2010) J Microbiol Methods, 83, pp. 164-167
  • Palumbo, E., Deghorain, M., Cocconcelli, P.S., Kleerebezem, M., Geyer, A., Hartung, T., Morath, S., Hols, P., D-alanyl ester depletion of teichoic acids in Lactobacillus plantarum results in a major modification of lipoteichoic acid composition and cell wall perforations at the septum mediated by the Acm2 autolysin (2006) J Bacteriol, 188, pp. 3709-3715
  • Perea Vélez, M., Verhoeven, T.L., Draing, C., Von Aulock, S., Pfitzenmaier, M., Geyer, A., Lambrichts, I., Pot, B., Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG (2007) Appl Environ Microbiol, 73, pp. 3595-3604
  • Piuri, M., Sanchez-Rivas, C., Ruzal, S.M., Adaptation to high salt in Lactobacillus: Role of peptides and proteolytic enzymes (2003) J Appl Microbiol, 95, pp. 372-379
  • Piuri, M., Sanchez-Rivas, C., Ruzal, S.M., Cell wall modifications during osmotic stress in Lactobacillus casei (2005) J Appl Microbiol, 98, pp. 84-95
  • Reichmann, N.T., Gründling, A., Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes (2011) FEMS Microbiol Lett, 319, pp. 97-105
  • Schirner, K., Marles-Wright, J., Lewis, R.J., Errington, J., Distinct and essential morphogenic functions for wall-and lipoteichoic acids in Bacillus subtilis (2009) EMBO J, 28, pp. 830-842
  • Schnitger, H., Papenberg, K., Ganse, E., Czok, R., Buecher, T., Adam, H., Chromatography of phosphorus-containing metabolities in a human liver biopsy specimen (1959) Biochem Z, 332, pp. 167-185
  • Silhavy, T.J., Kahne, D., Walker, S., The bacterial cell envelope (2010) Cold Spring Harb Perspect Biol, 2, pp. a000414
  • Soon Jang, K., Jung Eun, B., Seung, H.H., Dae, K.C., Byung-Gee, K., Multi-spectrometric analyses of lipoteichoic acids isolated from Lactobacillus plantarum (2011) Biochem Biophys Res Commun, 407, pp. 823-830
  • Steen, A., Palumbo, E., Deghorain, M., Cocconcelli, P.S., Delcour, J., Kuipers, O.P., Kok, J., Hols, P., Autolysis of Lactococcus lactis is increased upon D-alanine depletion of peptidoglycan and lipoteichoic acids (2005) J Bacteriol, 187, pp. 114-124
  • Veerkamp, J.H., Fatty acid composition of Bifidobacterium and Lactobacillus strains (1971) J Bacteriol, 108, pp. 861-867
  • Walter, J., Loach, D.M., Alqumber, M., Rockel, C., Hermann, C., Pfitzenmaier, M., Tannock, G.W., D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract (2007) Environ Microbiol, 9, pp. 1750-1760
  • Webb, A.J., Karatsa-Dodgson, M., Gründling, A., Twoenzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes (2009) Mol Microbiol, 74, pp. 299-314
  • Weidenmaier, C., Peschel, A., Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions (2008) Nat Rev Microbiol, 6, pp. 276-287
  • Wolters, P.J., Hildebrandt, K.M., Dickie, J.P., Anderson, J.S., Polymer length of teichuronic acid released from cell walls of Micrococcus luteus (1990) J Bacteriol, 172, pp. 5154-5159
  • Wörmann, M.E., Corrigan, R.M., Simpson, P.J., Matthews, S.J., Gründling, A., Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes (2011) Mol Microbiol, 79, pp. 566-583

Citas:

---------- APA ----------
Palomino, M.M., Allievi, M.C., Gründling, A., Sanchez-Rivas, C. & Ruzal, S.M. (2013) . Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid. Microbiology (United Kingdom), 159(PART11), 2416-2426.
http://dx.doi.org/10.1099/mic.0.070607-0
---------- CHICAGO ----------
Palomino, M.M., Allievi, M.C., Gründling, A., Sanchez-Rivas, C., Ruzal, S.M. "Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid" . Microbiology (United Kingdom) 159, no. PART11 (2013) : 2416-2426.
http://dx.doi.org/10.1099/mic.0.070607-0
---------- MLA ----------
Palomino, M.M., Allievi, M.C., Gründling, A., Sanchez-Rivas, C., Ruzal, S.M. "Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid" . Microbiology (United Kingdom), vol. 159, no. PART11, 2013, pp. 2416-2426.
http://dx.doi.org/10.1099/mic.0.070607-0
---------- VANCOUVER ----------
Palomino, M.M., Allievi, M.C., Gründling, A., Sanchez-Rivas, C., Ruzal, S.M. Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid. Microbiology. 2013;159(PART11):2416-2426.
http://dx.doi.org/10.1099/mic.0.070607-0