Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The importance of the content of anionic phospholipids [cardiolipin (CL) and phosphatidylglycerol (PG)] in the osmotic adaptation and in the membrane structure of Bacillus subtilis cultures was investigated. Insertion mutations in the three putative cardiolipin synthase genes (ywiE, ywnE and ywjE) were obtained. Only the ywnE mutation resulted in a complete deficiency in cardiolipin and thus corresponds to a true clsA gene. The osmotolerance of a clsA mutant was impaired: although at NaCl concentrations lower than 1.2 M the growth curves were similar to those of its wild-type control, at 1 .5 M NaCl (LBN medium) the lag period increased and the maximal optical density reached was lower. The membrane of the clsA mutant strain showed an increased PG content, at both exponential and stationary phase, but no trace of CL in either LB or LBN medium. As well as the deficiency in CL synthesis, the clsA mutant showed other differences in lipid and fatty acids content compared to the wild-type, suggesting a cross-regulation in membrane lipid pathways, crucial for the maintenance of membrane functionality and integrity. The biophysical characteristics of membranes and large unilamellar vesicles from the wild-type and clsA mutant strains were studied by Laurdan's steady-state fluorescence spectroscopy. At physiological temperature, the clsA mutant showed a decreased lateral lipid packing in the protein-free vesicles and isolated membranes compared with the wild-type strain. Interestingly, the lateral lipid packing of the membranes of both the wild-type and clsA mutant strains increased when they were grown in LBN. In a conditional IPTG-controlled pgsA mutant, unable to synthesize PG and CL in the absence of IPTG, the osmoresistance of the cultures correlated with their content of anionic phospholipids. The transcriptional activity of the clsA and pgsA genes was similar and increased twofold upon entry to stationary phase or under osmotic upshift. Overall, these results support the involvement of the anionic phospholipids in the growth of B. subtilis in media containing elevated NaCl concentrations. © 2006 SGM.

Registro:

Documento: Artículo
Título:Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity
Autor:López, C.S.; Alice, A.F.; Heras, H.; Rivas, E.A.; Sánchez-Rivas, C.
Filiación:Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Química Biológica, Pabellón II, 1428 Buenos Aires, Argentina
Instituto de Biología Celular y Neurociencias 'Dr E. De Robertis', Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, 1121 Buenos Aires, Argentina
Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), UNLP/CONICET, Facultad de Ciencias Médicas, Calle 60 y 120, 1900 La Plata, Argentina
Dept. of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
Palabras clave:cardiolipin; fatty acid; membrane lipid; phosphatidylglycerol; phospholipid; sodium chloride; synthetase; animal cell; article; Bacillus subtilis; bacterial growth; bacterial membrane; bacterium culture; cell vacuole; concentration (parameters); controlled study; correlation analysis; culture medium; fluorescence spectroscopy; gene insertion; gene mutation; genetic transcription; growth curve; lipid composition; lipogenesis; membrane structure; nonhuman; optical density; osmosis; priority journal; salinity; salt tolerance; steady state; strain difference; temperature; wild type; Adaptation, Physiological; Bacillus subtilis; Bacterial Proteins; Cardiolipins; Cell Membrane; Fatty Acids; Heat-Shock Response; Mutation; Osmolar Concentration; Osmotic Pressure; Phosphatidylglycerols; Sodium Chloride; Spores, Bacterial; Animalia; Bacillus subtilis; Bacteria (microorganisms)
Año:2006
Volumen:152
Número:3
Página de inicio:605
Página de fin:616
DOI: http://dx.doi.org/10.1099/mic.0.28345-0
Título revista:Microbiology
Título revista abreviado:Microbiology
ISSN:13500872
CODEN:MROBE
CAS:sodium chloride, 7647-14-5; synthetase, 9031-56-5, 9031-57-6; Bacterial Proteins; Cardiolipins; Fatty Acids; Phosphatidylglycerols; Sodium Chloride, 7647-14-5
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_13500872_v152_n3_p605_Lopez.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13500872_v152_n3_p605_Lopez

Referencias:

  • Bagatolli, L.A., Gratton, E., Direct observation of lipid domains in free-standing bilayers using two-photon excitation fluorescence microscopy (2001) J Fluoresc, 11, pp. 141-160
  • Bartlett, G.P., Phosphorus assay in column chromatography (1959) J Biol Chem, 234, pp. 466-468
  • Bron, S., (1990) Molecular Biological Methods for Bacillus Plasmids, pp. 75-136. , Edited by C.R. Harwood & S.M. Cutting. Chichester, UK: Wiley
  • Cao, M., Wang, T., Ye, R., Helman, J.D., Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σ M regulons (2002) Mol Microbiol, 45, pp. 1267-1276
  • Catucci, L., Depalo, N., Lattanzio, V.M.T., Agostiano, A., Corcelli, A., Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress (2004) Biochemistry, 43, pp. 15066-15072
  • Correa, O.S., Rivas, E.A., Barneix, A.J., Cellular envelopes and tolerance to acid pH in Mesorhizobium loti (1999) Curr Microbiol, 38, pp. 329-334
  • Csonka, L., Hanson, A., Prokaryotic osmoregulation: Genetics and physiology (1991) Annu Rev Microbiol, 45, pp. 569-606
  • D'Antuono, C., Fernandez-Tome, M.C., Sterin-Speziale, N., Bernik, D.L., Lipid-protein interactions in rat renal subcellular membranes: A biophysical and biochemical study (2000) Arch Biochem Biophys, 382, pp. 39-47
  • Dartois, V., Djavakhishvili, T., Hoch, J.A., KapB is a lipoprotein required for KinB signal transduction and activation for the phosphorelay to sporulation in Bacillus subtilis (1997) Mol Microbial, 26, pp. 1097-1108
  • Glassker, E., Heuberger, E.H., Konings, W.N., Poofman, B., Mechanism of osmotic activation of the quaternary compound transporter (QacT) of Lactobacillus plantarum (1998) J Bacteriol, 180, pp. 5540-5546
  • Gustin, M.C., Zhou, X.L., Martinac, B., Kung, C., A mechanosensitive ion channel in the yeast plasma membrane (1988) Science, 242, pp. 762-765
  • Hanson, R.S., Phillips, J.A., (1981) Manual of Methods for General Bacteriology, , Washington, DC: American Society for Microbiology
  • Hirsch-Lerner, D., Barenholz, Y., Hydration of lipoplexes commonly used in gene delivery: Follow up by Laurdan fluorescence changes and quantification by differential scanning calorimetry (1999) Biochim Biophys Acta, 1461, pp. 47-57
  • Horsburgh, M.J., Moir, A., Sigma M, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt (1999) Mol Microbiol, 32, pp. 41-50
  • Jensen, M.O., Mouritsen, O.G., Lipids do influence protein function - The hydrophobic matching hypothesis revisited (2004) Biochim Biophys Acta, 1666, pp. 205-226
  • Jiang, F., Ryan, M.T., Schlame, M., Zhao, M., Gu, Z., Klingenberg, M., Pfanner, N., Greenber, M.L., Absence of cardiolipin in the cdr1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function (2000) J Biol Chem, 275, pp. 22387-22394
  • Kaneda, T., Fatty acids in the genus Bacillus: An example of branched-chain preference (1977) Bacteriol Rev, 41, pp. 391-418
  • Kappes, R.M., Kempf, B., Bremer, E., Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: Characterization of OpuD (1996) J Bacteriol, 178, pp. 5071-5079
  • Kates, M., (1986) Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, , New York: Elsevier
  • Kawai, K., Shoda, M., Harashima, R., Sadaie, Y., Hara, H., Matsumoto, K., Cardiolipin domains in Bacillus subtilis Marburg membranes (2004) J Bacteriol, 186, pp. 1475-1483
  • Kempf, B., Bremer, E., Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments (1998) Arch Microbiol, 170, pp. 319-330
  • Kobayashi, K., Ehrlich, S.D., Albertini, A., Essential Bacillus subtilis genes (2003) Proc Natl Acad Sci U S A, 100, pp. 4678-4683. , & 96 other authors
  • Kunst, F., Rapoport, G., Salt stress in an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis (1995) J Bacteriol, 177, pp. 2403-2407
  • Lee, A.G., How lipids affects the activities of integral membrane proteins (2004) Biochim Biophys Acta, 1666, pp. 62-87
  • López, C.S., Heras, H., Ruzal, S.M., Sánchez-Rivas, C., Rivas, E.A., Variations on the envelope composition of Bacillus subtilis during growth in hyperosmotic medium (1998) Curr Microbiol, 36, pp. 55-61
  • López, C.S., Heras, H., Garda, H., Ruzal, S.M., Sánchez-Rivas, C., Rivas, E.A., Biochemical and biophysical studies of Bacillus subtilis (2001) Int J Food Microbial, 55, pp. 137-142
  • López, C.S., Garda, H., Rivas, E.A., The effect of osmotic stress on the biophysical behavior of the Bacillus subtilis membrane studied by dynamic and steady-state fluorescence anisotropy (2002) Arch Biochem Biophys, 408, pp. 220-228
  • Lysenko, E., Ogura, T., Cutting, S.M., Characterization of the ftsH gene of Bacillus subtilis (1997) Microbiology, 143, pp. 971-978
  • Machado, M.C., López, C.S., Heras, H., Rivas, E.A., Osmotic response in Lactobacillus casei ATCC 393: Biochemical and biophysical characteristics of membrane (2004) Arch Biochem Biophys, 422, pp. 61-70
  • Martin-Verstraete, L., Debarbouillé, M., Klier, A., Rapoport, G., Mutagenesis of the Bacillus subtilis '- 12, -24' promoter of the levanase operon and evidence for the existence of an upstream activating sequence (1992) J Mol Biol, 226, pp. 85-99
  • Matsumoto, K., Dispensable nature of phosphatidylglycerol in Escherichia coli: Dual roles of anionic phospholipids (2001) Mol Microbiol, 39, pp. 1427-1433
  • Matsumoto, K., Takahashi, H., Harashima, R., Hara, H., Membrane lipid synthesis in Bacillus subtilis Marburg (1999) 10th International Conference on Bacilli, p. 72. , June 27-july 1 1999, Grand Hotel Dino, Baveno, Italy, Abstract
  • McLaggan, D., Naprstek, J., Buurman, E.T., Epstein, W., Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli (1994) J Biol Chem, 269, pp. 1911-1917
  • Miller, J.H., (1992) A Short Course in Bacterial Genetics, pp. 72-74. , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
  • Moe, P., Blount, P., Assessment potential stimuli for mechano-dependent gating of MscL: Effects of pressure, tension, and lipid headgroups (2005) Biochemistry, 44, pp. 12239-12244
  • Parasassi, T., Gratton, E., Membrane lipid domains and dynamics as detected by Laurdan fluorescence (1995) J Fluoresc, 5, pp. 59-69
  • Parasassi, T., Di Stefano, M., Loeiro, M., Ravagnan, G., Gratton, E., Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence (1994) Biophys J, 66, pp. 120-132
  • Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J.D., Volker, U., Hecker, M., Global analysis of the general stress response of Bacillus subtilis (2001) J Bacteriol, 83, pp. 5617-5631
  • Piuri, M., Sánchez-Rivas, C., Ruzal, S.M., Adaptation to high salt in Lactobacillus: Role of peptides and proteolytic enzymes (2003) J Appl Microbiol, 95, pp. 372-379
  • Piuri, M., Sánchez-Rivas, C., Ruzal, S.M., Cell wall modifications during osmotic stress in Lactobacillus casei (2005) J Appl Microbiol, 98, pp. 84-95
  • Poolman, B., Blount, P., Folgering, J.H.A., Friesen, R.H.E., Moe, P.C., van der Heide, T., How do membrane proteins sense stress? (2002) Mol Microbiol, 44, pp. 889-902
  • Poolman, B., Spitzer, J.J., Wood, J.M., Bacterial osmosensing: Roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions (2004) Biochim Biophys Acta, 1666, pp. 88-104
  • Price, C.W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C.K., Youngman, P., Genome-wide analysis of the general stress response in Bacillus subtilis (2001) Mol Microbiol, 41, pp. 757-774
  • Record Jr., M.T., Courtenay, E.S., Cayley, D.S., Guttman, H.J., Responses of Escherichia coli to osmotic stress: Large changes in amounts of cytoplasmic solutes and water (1998) Trends Biochem Sci, 23, pp. 143-148
  • Rivas, E.A., Luzzati, V., Polymorphisme des lipides polaires et des galactolipides de chloroplastes de maïs, en présence d'eau (1969) J Mol Biol, 41, pp. 261-275
  • Ruzal, S., Sánchez-Rivas, C., Physiological and genetic characterization of the osmotic stress response in Bacillus subtilis (1994) Can J Microbiol, 40, pp. 140-144
  • Ruzal, S., Sánchez-Rivas, C., Role of DegU in the osmotic stress response of Bacillus subtilis (1998) Curr Microbiol, 37, pp. 368-372
  • Ruzal, S., López, C., Rivas, E., Sánchez-Rivas, C., Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis (1998) Curr Microbiol, 36, pp. 75-79
  • Sánchez-Rivas, C., Bohin, J.P., Cardiolipin content and protoplast fusion efficiency in Bacillus subtilis (1983) FEMS Microbiol Lett, 19, pp. 137-141
  • Schaeffer, P., Millet, J., Aubert, J.P., Catabolic repression of bacterial sporulation (1965) Proc Natl Acad Sci U S A, 54, pp. 704-711
  • Stalkamp, I., Dowhan, W., Altendorf, K., Jung, K., Negatively charged phospholipids influence the activity of the sensor kinase KdpD of Escherichia coli (1999) Arch Microbiol, 172, pp. 295-302
  • Steil, L., Hoffmann, T., Budde, I., Volker, U., Bremer, E., Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity (2003) J Bacteriol, 185, pp. 6358-6370
  • Thackray, P.D., Moir, A., SigM, an extracytoplasmic function sigma factor of Bacillus subtilis, is activated in response to cell wall antibiotics, ethanol, heat, and superoxide stress (2003) J Bacteriol, 185, pp. 3491-3498
  • Vagner, V., Dervyn, E., Erlich, D., A vector for systematic gene inactivation in Bacillus subtilis (1998) Microbiol, 144, pp. 3097-3104
  • van der Heide, T., Stuart, M.C.A., Poolman, B., On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine (2001) EMBO J, 20, pp. 7022-7032
  • von Blohn, C., Kempf, B., Capees, R.M., Bremer, E., Osmostress response in Bacillus subtilis: Characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B (1997) Mol Microbiol, 25, pp. 175-187
  • Whatmore, A.M., Reed, R.H., Determination of turgor pressure in Bacillus subtilis: A possible role of K+ in turgor regulation (1990) J Gen Microbiol, 136, pp. 2521-2526
  • Whatmore, A.M., Chudek, J.A., Reed, R.H., The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis (1990) J Gen Microbiol, 136, pp. 2527-2535
  • Wood, J.M., Osmosensing by bacteria: Signals and membrane-based sensors (1999) Microbiol Mol Biol Rev, 63, pp. 230-262
  • Yan, D., Ikeda, T.P., Shauger, A.E., Kustu, S., Glutamate is required to maintain the steady state potassium pool in Salmonella typhimurium (1996) Proc Natl Acad Sci U S A, 93, pp. 6527-6531
  • Yasbin, R., Fields, P., Anderson, P., Properties of Bacillus subtilis 168 derivatives freed of their natural prophages (1980) Gene, 12, pp. 155-169

Citas:

---------- APA ----------
López, C.S., Alice, A.F., Heras, H., Rivas, E.A. & Sánchez-Rivas, C. (2006) . Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology, 152(3), 605-616.
http://dx.doi.org/10.1099/mic.0.28345-0
---------- CHICAGO ----------
López, C.S., Alice, A.F., Heras, H., Rivas, E.A., Sánchez-Rivas, C. "Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity" . Microbiology 152, no. 3 (2006) : 605-616.
http://dx.doi.org/10.1099/mic.0.28345-0
---------- MLA ----------
López, C.S., Alice, A.F., Heras, H., Rivas, E.A., Sánchez-Rivas, C. "Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity" . Microbiology, vol. 152, no. 3, 2006, pp. 605-616.
http://dx.doi.org/10.1099/mic.0.28345-0
---------- VANCOUVER ----------
López, C.S., Alice, A.F., Heras, H., Rivas, E.A., Sánchez-Rivas, C. Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology. 2006;152(3):605-616.
http://dx.doi.org/10.1099/mic.0.28345-0