Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bacillus sphaericus, a bacterium of biotechnological interest due to its ability to produce mosquitocidal toxins, is unable to use sugars as carbon source. However, ptsHI genes encoding HPr and EI proteins belonging to a PTS were cloned, sequenced and characterized. Both HPr and EI proteins were fully functional for phosphoenolpyruvate-dependent transphosphorylation in complementation assays using extracts from Staphylococcus aureus mutants for one of these proteins. HPr(His6) was purified from wild-type and a Ser46/Gln mutant of B. sphaericus, and used for in vitro phosphorylation experiments using extracts from either B. sphaericus or Bacillus subtilis as kinase source. The results showed that both phosphorylated forms, P-Ser46-HPr and P-His15-HPr, could be obtained. The findings also proved indirectly the existence of an HPr kinase activity in B. sphaericus. The genetic structure of these ptsHI genes has some unusual features, as they are co-transcribed with genes encoding metabolic enzymes related to N-acetylglucosamine (GlcNAc) catabolism (nagA, nagB and an undetermined orf2). In fact, this bacterium was able to utilize this amino sugar as carbon and energy source, but a ptsH null mutant had lost this characteristic. Investigation of GlcNAc uptake and streptozotocin inhibition in both a wild-type and a ptsH null mutant strain led to the proposal that GlcNAc is transported and phosphorylated by an EIINag element of the PTS, as yet uncharacterized. In addition, GlcNAc-6-phosphate deacetylase and GlcN-6-phosphate deaminase activities were determined; both were induced in the presence of GlcNAc. These results, together with the authors' recent findings of the presence of a phosphofructokinase activity, are strongly indicative of a glycolytic pathway in B. sphaericus. They also open new possibilities for genetic improvements in industrial applications.

Registro:

Documento: Artículo
Título:Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus
Autor:Alice, A.F.; Pérez-Martínez, G.; Sánchez-Rivas, C.
Filiación:Laboratorio de Microbiología, Departamento de Quimica Biologica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Departamento de Biotecnología, Inst. Agroquimica Tecnol. Alimentos, CSIC, Paterna, Valencia, Spain
Dept. of Molec. Microbiol./Immunol., Oregon Health/Science University, Portland, OR, United States
Palabras clave:6 phosphofructokinase; bacterial toxin; carbon; carrier protein; deaminase; glycine; histidine; n acetylglucosamine; phosphoenolpyruvate sugar phosphotransferase; phosphotransferase; serine; streptozocin; sugar; animal cell; Bacillus sphaericus; Bacillus subtilis; bacterial strain; bacterium mutant; biotechnology; carbon source; catabolism; controlled study; energy resource; enzyme activity; enzyme metabolism; gene sequence; gene structure; genetic code; genetic complementation; genetic transcription; glycolysis; in vitro study; insecticidal activity; molecular cloning; mosquito; nonhuman; nucleotide sequence; priority journal; protein function; protein phosphorylation; protein purification; review; Staphylococcus aureus; toxin synthesis; transport kinetics; wild type; Animalia; Bacillus sphaericus; Bacillus sphaericus; Bacillus subtilis; Bacteria (microorganisms); Posibacteria; Prokaryota; Staphylococcus aureus; Staphylococcus aureus
Año:2003
Volumen:149
Número:7
Página de inicio:1687
Página de fin:1698
DOI: http://dx.doi.org/10.1099/mic.0.26231-0
Título revista:Microbiology
Título revista abreviado:Microbiology
ISSN:13500872
CODEN:MROBE
CAS:6 phosphofructokinase, 9001-80-3; carbon, 7440-44-0; carrier protein, 80700-39-6; deaminase, 9067-84-9; glycine, 56-40-6, 6000-43-7, 6000-44-8; histidine, 645-35-2, 7006-35-1, 71-00-1; n acetylglucosamine, 7512-17-6; phosphoenolpyruvate sugar phosphotransferase, 56941-29-8; phosphotransferase, 9031-09-8, 9031-44-1; serine, 56-45-1, 6898-95-9; streptozocin, 18883-66-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13500872_v149_n7_p1687_Alice

Referencias:

  • Alexander, B., Priest, F.G., Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae (1990) J. Gen. Microbiol., 136, pp. 367-376
  • Alice, A.F., Sistema de fosfotransferasa dependiente del fosfoenolpiruvato (PTS) y represión catabólica en Bacillus subtilis (2001), PhD Thesis, University of Buenos Aires; Alice, A.F., Perez-Martinez, G., Sanchez-Rivas, C., Existence of a true phosphofructokinase in Bacillus sphaericus: Cloning and sequencing of the pfk gene (2002) Appl. Environ. Microbiol., 68, pp. 6410-6415
  • Altschul, S.F., Madden, T.L., Schaeffer, A.A., Zhang, A., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res., 25, pp. 3398-3402
  • Ammer, J., Brennenstuhl, M., Schindler, P., Höltje, J.V., Zähner, H., Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate: Sugar phosphotransferase system in Escherichia coli (1979) Antimicrob. Agents Chemother., 16, pp. 801-807
  • Bates, C.J., Pasternak, C.A., Further studies on the regulation of amino sugar metabolism in Bacillus subtilis (1965) Biochem. J., 96, pp. 147-154
  • Baumann, P., Clark, M.A., Baumann, L., Broadwell, A.H., Bacillus sphaericus as a mosquito pathogen: Properties of the organism and its toxins (1991) Microbiol. Rev., 55, pp. 425-436
  • Charles, J.F., Nielsen-Le Roux, C., Delécluse, A., Bacillus sphaericus toxins: Molecular biology and mode of action (1996) Annu. Rev. Entomol., 41, pp. 451-472
  • Charrier, V., Buckley, E., Parsonage, D., Galinier, A., Darbon, E., Jaquinod, M., Forest, E., Clairbone, A., Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue (1997) J. Biol. Chem., 272, pp. 14166-14174
  • Clarke, J.S., Pasternak, C.A., The regulation of amino sugar metabolism in Bacillus subtilis (1962) Biochem. J., 84, pp. 185-191
  • Couch, T.L., Industrial fermentation and formulation of entomopathogenic bacteria (2000) Entomopathogenic Bacteria: From Laboratory to Field Application, pp. 297-316. , Edited by J. F. Charles and others. Dordrecht:: Kluwer
  • deBarjac, H., Veron, M., Cosmao Dumanoir, V., Caractérisation biochimique et sérologique de souches de Bacillus sphaericus pathogènes ou non pour les moustiques (1980) Ann. Microbiol., 131 B, pp. 191-201
  • Deutscher, J., Küster, E., Bergstedt, U., Charrier, V., Hillen, W., Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to catabolite repression in Gram-positive bacteria (1995) Mol. Microbiol., 15, pp. 1049-1053
  • Dossonnet, V., Monedero, V., Zagorec, M., Galinier, A., Perez-Martinez, G., Deutscher, J., Phosphorylation of HPr by the bifunctional HPr kinase/P-Ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion (2000) J. Bacteriol., 182, pp. 2582-2590
  • Fujita, Y., Miwa, Y., Galinier, A., Deutscher, J., Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and serylphosphorylated HPr (1995) Mol. Microbiol., 17, pp. 953-960
  • Galinier, A., Kravanja, M., Engelmann, R., Hengstenberg, W., Kilhoffer, M.C., Deutscher, J., Hiech, J., New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 1823-1828
  • Gonzy-Tréboul, G., Zagorec, M., Rain-Guian, M.C., Steinmetz, M., Phosphoenolpyruvate: Sugar phosphotransferase system of Bacillus subtilis: Nucleotide sequence of ptsX, ptsH and the 5′ end of the ptsl and evidence for a ptsHl operon (1989) Mol. Microbiol., 3, pp. 103-112
  • Guerout-Fleury, A.M., Shazand, K., Frandsen, N., Stragier, P., Antibiotic-resistance cassettes for Bacillus subtilis (1995) Gene, 167, pp. 335-336
  • Haldenwang, W.G., The sigma factors of Bacillus subtilis (1995) Microbiol. Rev., 59, pp. 1-30
  • Hengstenberg, W., Penberthy, W., Hill, K., Morse, M., Phosphotransferase system of Staphylococcus aureus: Its requirement for the accumulation and metabolism of galactosides (1969) J. Bacteriol., 99, pp. 383-388
  • Henkin, T.M., Grundy, F.J., Nicholson, W.L., Chamblis, G.H., Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli LacI and GalR repressors (1991) Mol. Microbiol., 5, pp. 575-584
  • Himmelreich, R., Hilbert, H., Plagens, H., Pirkl, E., Li, B.C., Herrmann, R., Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae (1996) Nucleic Acids Res., 24, pp. 4420-4449
  • Hoischen, C., Dijkstra, A., Rottem, S., Reizer, J., Saier M.H., Jr., Presence of protein constituents of the Gram-positive bacterial phosphotransferase regulatory system in Acholeplasma laidlawii (1993) J. Bacteriol., 175, pp. 6599-6604
  • Iwamoto, R., Imanaga, Y., Direct evidence of the Entner-Doudoroff pathway operating in the metabolism of D-glucosamine in bacteria (1991) J. Biochem., 109, pp. 66-69
  • Jacobson, G.R., Poy, F., Lengeler, J.W., Inhibition of Streptococcus mutans by the antibiotic streptozotocin: Mechanisms of uptake and the selection of carbohydrate-negative mutants (1990) Infect. Immun., 58, pp. 543-549
  • Jault, J.M., Fieulaine, S., Nessler, S., Gonzalo, P., Di Pietro, A., Deutscher, J., Galinier, A., The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nulcleotide and fructose 1,6-bisphosphate binding (2000) J. Biol. Chem., 275, pp. 1773-1780
  • Jones-Mortimer, M.C., Kornberg, H.L., Amino-sugar transport systems in Escherichia coli K12 (1980) J. Gen. Microbiol., 117, pp. 369-376
  • Kravanja, M., Engelmann, R., Dossonnet, V., The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: The HPr kinase/phosphatase (1999) Mol. Microbiol., 31, pp. 59-66. , 7 other authors
  • Krych, V.K., Johnson, J.L., Yousten, A.A., Deoxyribonucleic acid homologies among strains of Bacillus sphaericus (1980) Int. J. Syst. Bacteriol., 30, pp. 476-482
  • Lai, X., Ingram, L.O., Discovery of a ptsHl operon, which includes a third gene (ptsT), in the thermophile Bacillus stearothermophilus (1995) Microbiology, 141, pp. 1443-1449
  • Landt, O., Grunert, H.P., Hanh, U., A general method for rapid site-directed mutagenesis using the polymerase chain reaction (1990) Gene, 96, pp. 125-128
  • Lengeler, J., Analysis of the physiological effects of the antibiotic streptozotocin on Escherichia coli K12 and other sensitive bacteria (1980) Arch. Microbiol., 128, pp. 196-203
  • Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F.M., Hecker, M., Stülke, J., Transcription of glycolytic genes and operons in Bacillus subtilis: Evidence for the presence of multiple levels of control of the gapA operon (2001) Mol. Microbiol., 41, pp. 409-422
  • Martin-Verstraete, I., Débarbouillé, M., Klier, A., Rapoport, G., Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon (1990) J. Mol. Biol., 214, pp. 657-671
  • Mijakovic, I., Poncet, S., Galinier, A., Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: A relic of early life? (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 13442-13447. , 9 other authors
  • Mitchell, W., Reizer, J., Herring, C., Hoischen, C., Saier M.H., Jr., Identification of a phosphoenolpyruvate: Fructose phosphotransferase system (fructose-1-phosphate forming) in Listeria monocytogenes (1993) J. Bacteriol., 175, pp. 2758-2761
  • Mobley, H.T., Doyle, R.J., Streips, U.N., Langemeier, S.O., Transport and incorporation of N-acetylglucosamine in Bacillus subtilis (1982) J. Bacteriol., 150, pp. 8-15
  • Peri, K.G., Waygood, E.B., Sequence of cloned Enzyme IINag of the phosphoenolpyruvate: N-acetylglucosamine phosphotransferase system of Escherichia coli (1988) Biochemistry, 27, pp. 6054-6061
  • Plumbridge, J., Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nag regulon (1989) Mol. Microbiol., 3, pp. 506-515
  • Plumbridge, J., Co-ordinated regulation of amino sugar biosynthesis and degradation: The NagC repressor acts as both an activator and a repressor for the transcription of the glm US operon and requires two separated NagC binding sites (1995) EMBO J., 15, pp. 3958-3965
  • Plumbridge, J., Regulation of PTS gene expression by the homologous transcriptional regulators, Mlc and NagC, in Escherichia coli (or how two similar repressors can behave differently) (2001) J. Mol. Microbiol. Biotechnol., 3, pp. 371-380
  • Porter, A.G., Davidson, E.W., Liu, J.W., Mosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoes (1993) Microbiol. Rev., 57, pp. 838-861
  • Postma, P.W., Lengeler, J.W., Jacobson, G.R., Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria (1993) Microbiol. Rev., 57, pp. 543-594
  • Priest, F.G., Biodiversity of the entomopathogenic, endospore-forming bacteria (2000) Entomopathogenic Bacteria: From Laboratory to Field Application, pp. 1-22. , Edited by J. F. Charles and others. Dordrecht: Kluwer
  • Reizer, J., Peterkofsky, A., Romano, A., Evidence for the presence of heat-stable protein (HPr) and ATP-dependent HPr kinase in heterofermentative lactobacilli lacking phosphoenolpyruvate: Glycose phosphotransferase activity (1988) Proc. Natl. Acad. Sci. U. S. A., 85, pp. 2041-2045
  • Reizer, J., Hoischen, C., Titgemeyer, F., Rivolta, C., Rabus, R., Stülke, J., Karamata, D., Hillen, W., A novel protein kinase that controls carbon catabolite repression in bacteria (1998) Mol. Microbiol., 27, pp. 1157-1169
  • Reizer, J., Bachem, S., Reizer, A., Arnaud, M., Saier M.H., Jr., Stülke, J., Novel phosphotransferase system genes revealed by genome analysis - The complete complement of PTS proteins encoded within the genome of Bacillus subtilis (1999) Microbiology, 145, pp. 3419-3429
  • Reizer, J., Reizer, A., Lagrou, M.J., Folger, K.R., Kendall Stover, C., Saier M.H., Jr., Novel phosphotransferase systems revealed by bacterial genome analysis: The complete repertoire of pts genes in Pseudomonas aeruginosa (1999) J. Mol. Microbiol. Biotechnol., 1, pp. 289-293
  • Rippere, K.E., Johnson, J.L., Yousten, A.A., DNA similarities among mosquito-pathogens and nonpathogenic strains of Bacillus sphaericus (1997) Int. J. Syst. Bacteriol., 47, pp. 214-216
  • Romano, A., Saier M.H., Jr., Evolution of bacterial phosphoenolpyruvate: Sugar phosphotransferase system. I. Physiological and organismic considerations (1992) The Evolution of Metabolic Function, pp. 143-170. , Edited by R. P. Mortlock. Boca Raton, FL: CRC Press
  • Roossien, F.F., Brink, J., Robillard, G.T., A simple procedure for the synthesis of [32P]phosphoenolpyruvate via the pyruvate kinase exchange reaction at equilibrium (1983) Biochim. Biophys. Acta, 760, pp. 185-187
  • Russell, B.L., Jelley, S.A., Yousten, A.A., Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362 (1989) Appl. Environ. Microbiol., 55, pp. 294-297
  • Saier M.H., Jr., Chavaux, S., Cook, G.M., Deutscher, J., Paulsen, I.T., Reizer, J., Ye, J.J., Catabolite repression and inducer control in Gram-positive bacteria (1996) Microbiology, 142, pp. 217-230
  • Sambrook, J., Fritsh, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor NY: Cold Spring Harbor Laboratory
  • Steinhauer, K., Jepp, T., Hillen, W., Stülke, J., A novel mode of control of Mycoplasma pneumoniae HPr kinase/phosphatase activity reflects its parasitic lifestyle (2002) Microbiology, 148, pp. 3277-3284
  • Stülke, J., Hillen, W., Carbon catabolite repression in bacteria (1999) Curr. Opin. Microbiol., 2, pp. 195-201
  • Stülke, J., Martin-Verstraete, I., Zagorec, M., Rose, M., Klier, A., Rapoport, G., Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT (1997) Mol. Microbiol., 25, pp. 65-78
  • Stülke, J., Arnaud, M., Rapoport, G., Martin-Verstraete, I., PRD - A protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria (1998) Mol. Microbiol., 28, pp. 865-874
  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res., 25, pp. 4876-4882
  • Titgemeyer, F., Hillen, W., Global control of sugar metabolism: A grain-positive solution (2002) Antonie van Leeuwenhoek, 82, pp. 59-71
  • Titgemeyer, F., Walkenhorst, J., Reizer, J., Stuiver, M., Cui, X., Saier M.H., Jr., Identification and characterization of phosphoenolpyruvate:Fructose phosphotransferase in three Streptomyces species (1995) Microbiology, 141, pp. 51-58
  • Vogler, A.P., Lengeler, J.W., Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation (1989) Mol. Gen. Genet., 219, pp. 97-105
  • Wagner, A., Küster-Schöck, E., Hillen, W., Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI (2000) J. Mol. Microbiol. Biotechnol., 2, pp. 587-592
  • Wang, F., Xiao, X., Saito, A., Schrempf, H., Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine (2002) Mol. Genet. Genomics, 268, pp. 344-351
  • Zhu, P.P., Herzberg, O., Peterkofsky, A., Topography of the interaction of HPr(Ser) kinase with HPr (1998) Biochemistry, 37, pp. 11762-11770

Citas:

---------- APA ----------
Alice, A.F., Pérez-Martínez, G. & Sánchez-Rivas, C. (2003) . Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus. Microbiology, 149(7), 1687-1698.
http://dx.doi.org/10.1099/mic.0.26231-0
---------- CHICAGO ----------
Alice, A.F., Pérez-Martínez, G., Sánchez-Rivas, C. "Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus" . Microbiology 149, no. 7 (2003) : 1687-1698.
http://dx.doi.org/10.1099/mic.0.26231-0
---------- MLA ----------
Alice, A.F., Pérez-Martínez, G., Sánchez-Rivas, C. "Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus" . Microbiology, vol. 149, no. 7, 2003, pp. 1687-1698.
http://dx.doi.org/10.1099/mic.0.26231-0
---------- VANCOUVER ----------
Alice, A.F., Pérez-Martínez, G., Sánchez-Rivas, C. Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus. Microbiology. 2003;149(7):1687-1698.
http://dx.doi.org/10.1099/mic.0.26231-0