Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Silver nanoparticles (AgNPs) were biosynthesized using fungal extract of Trametes trogii, a white rot basidiomycete involved in wood decay worldwide, which produces several ligninolytic enzymes. According to previous studies using fungi, enzymes are involved in nanoparticles synthesis, through the so-called green synthesis process, acting as reducing and capping agents. Understanding which factors could modify nanoparticles’ shape, size and production efficiency is relevant. The results showed that under the protocol used in this work, this strain of Trametes trogii is able to synthesize silver nanoparticles with the addition of silver nitrate (AgNO3) to the fungal extract obtained with an optimal incubation time of 72 h and pH 13, using NaOH to adjust pH. The progress of the reaction was monitored using UV–visible spectroscopy and synthesized AgNPs was characterized by scanning electron microscope (SEM), through in-lens and QBDS detectors, and energy-dispersive X-ray spectroscopy (EDX). Additionally, SPR absorption was modeled using Mie theory and simple nanoparticles and core-shell configurations were studied, to understand the morphology and environment of the nanoparticles. This protocol represents a simple and cheap synthesis in the absence of toxic reagents and under an environmentally friendly condition. © 2018 King Saud University

Registro:

Documento: Artículo
Título:Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii
Autor:Kobashigawa, J.M.; Robles, C.A.; Martínez Ricci, M.L.; Carmarán, C.C.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Ciudad Autónoma de Buenos AiresC1428 EHA, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Autónoma de Buenos AiresC1428 EHA, Argentina
CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, INQUIMAE, Laboratorio de Superficies y Materiales Funcionales, Ciudad Autónoma de Buenos AiresC1428 EHA, Argentina
Palabras clave:Green synthesis; High pH; Silver nanoparticles; Trametes trogii
Año:2018
DOI: http://dx.doi.org/10.1016/j.sjbs.2018.09.006
Título revista:Saudi Journal of Biological Sciences
Título revista abreviado:Saudi J. Biol. Sci.
ISSN:1319562X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1319562X_v_n_p_Kobashigawa

Referencias:

  • Abdel-Hafez, S.I., Nafady, N.A., Abdel-Rahim, I.R., Shaltout, A.M., Mohamed, M.A., Biogenesis and optimisation of silver nanoparticles by the endophytic fungus Cladosporium sphaerospermum (2016) Int. J. Nano Chem., 2, pp. 11-19
  • Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., Khan, M.I., Kumar, R., Sastry, M., Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum (2002) J. Am. Chem. Soc., 124, pp. 12108-12109
  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum (2003) Colloids Surf. B, 28, pp. 313-318
  • Baker, S., Satish, S., Endophytes: toward a vision in synthesis of nanoparticle for future therapeutic agents (2012) Int. J. Bio-Inorg. Hybd. Nanomat., 1, pp. 67-77
  • Birla, S.S., Gaikwad, S.C., Gade, A.K., Rai, M.K., Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions (2013) Sci. World J., 12
  • Bohren, C.F., Huffman, D.R., Absorption and Scattering of Light by Small Particles (2008), John Wiley & Sons New York; Cuevas, R., Durán, N., Diez, M.C., Tortella, G.R., Rubilar, O., Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests (2015) J. Nanomater., 16, p. 57
  • Durán, N., Cuevas, R., Cordi, L., Rubilar, O., Diez, M.C., Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@ AgCl) produced by laccase from Trametes versicolor (2014) Springer Plus, 3, p. 645
  • Durán, N., Marcato, P.D., Alves, O.L., De Souza, G.I., Esposito, E., Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains (2005) J. Nanobiotechnol., 3, p. 8
  • Filankembo, A., Pileni, M.P., Is the template of self-colloidal assemblies the only factor that controls nanocrystal shapes? (2000) J. Phys. Chem. B, 104, pp. 5865-5868
  • Gade, A., Gaikwad, S., Duran, N., Rai, M., Green synthesis of silver nanoparticles by Phoma glomerata (2014) Micron, 59, pp. 52-59
  • Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., Rai, M., Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology (2009) Biol. Med., 5, pp. 382-386
  • Ghorbani, H.R., Mehr, F.P., Poor, A.K., Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium (2015) Orient. J. Chem., 31, pp. 527-529
  • Gorshina, E.S., Rusinova, T.V., Biryukov, V.V., Morozova, O.V., Shleev, S.V., Yaropolov, A.I., The dynamics of oxidase activity during cultivation of basidiomycetes from the genus Trametes Fr (2006) Appl. Biochem. Microbiol., 42, pp. 558-563
  • Hamedi, S., Shojaosadati, S.A., Shokrollahzadeh, S., Hashemi-Najafabadi, S., Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity (2014) World J. Microbiol. Biotechnol., 30, pp. 693-704
  • Honary, S., Barabadi, H., Gharaei-Fathabad, E., Naghibi, F., Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii (2012) Dig. J. Nanomater. Bios., 7, pp. 999-1005
  • Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment (2003) J. Phys. Chem. B, 107, pp. 668-677
  • Khlebtsov, N.G., Dykman, L.A., Optical properties and biomedical applications of plasmonic nanoparticles (2010) J. Quant. Spectrosc. Radiat. Transfer., 111, pp. 1-35
  • Korbekandi, H., Ashari, Z., Iravani, S., Abbasi, S., Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum (2013) Iran J. Pharm. Res., 12, pp. 289-298
  • Kumar, S.A., Abyaneh, M.K., Gosavi, S.W., Kulkarni, S.K., Pasricha, R., Ahmad, A., Khan, M.I., Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3 (2007) Biotechnol. Lett., 29, pp. 439-445
  • Kuppusamy, P., Yusoff, M.M., Maniam, G.P., Govindan, N., Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report (2016) Saudi Pharm. J., 24, pp. 473-484
  • Levin, L., Forchiassin, F., Ramos, A.M., Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii (2002) Mycologia, 94 (3), pp. 377-383
  • Levin, L., Melignani, E., Ramos, A.M., Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates (2010) Bioresour. Technol., 101, pp. 4554-4563
  • Levin, L., Viale, A., Forchiassin, A., Degradation of organic pollutants by the white rot basidiomycete Trametes trogii (2003) Int. Biodeterior. Biodegrad., 52, pp. 1-5
  • Li, Y., Wu, Y., Ong, B.S., Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics (2005) J. Am. Chem. Soc., 127, pp. 3266-3267
  • Linic, S., Aslam, U., Boerigter, C., Morabito, M., Photochemical transformations on plasmonic metal nanoparticles (2015) Nat. Mater., 14, pp. 567-576
  • Maier, S.A., Plasmonics: Fundamentals and Applications (2007), Springer Science & Business Media New York; Matinise, N., Fuku, X.G., Kaviyarasu, K., Mayedwa, N., Maaza, M., ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation (2017) Appl. Surf. Sci., 406, pp. 339-347
  • Mätzler, C., (2002), MATLAB Functions for Mie Scattering and Absorption, Res. Rep. 2002‐08, Inst. für Angew. Phys., Bern; Noguez, C., Surface plasmons on metal nanoparticles: the influence of shape and physical environment (2007) J. Phys. Chem. C, 111, pp. 3806-3819
  • Ojha, A.K., Forster, S., Kumar, S., Vats, S., Negi, S., Fischer, I., Synthesis of well–dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains (2013) J. Nanobiotechnol., 11, p. 42
  • Park, T.J., Lee, K.G., Lee, S.Y., Advances in microbial biosynthesis of metal nanoparticles (2016) Appl. Microbiol. Biotechnol., 100, pp. 521-534
  • Paul, S., Singh, A.R., Sasikumar, C.S., Green synthesis of bio-silver nanoparticles by Parmelia perlata, Ganoderma lucidum and Phellinus igniarius & their fields of application (2015) Indian J. Res. Pharm. Biotechnol., 3, p. 100
  • Prabhu, S., Poulose, E.K., Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects (2012) Int. Nano Lett., 2, p. 32
  • Punjabi, K., Choudhary, P., Samant, L., Mukherjee, S., Vaidya, S., Chowdhary, A., Biosynthesis of nanoparticles: a review (2015) Int. J. Pharm. Sci. Rev. Res., 30, pp. 219-226
  • Qiu, J.H., Zhou, P., Gao, X.Y., Yu, J.N., Wang, S.Y., Li, J., Zheng, Y.X., Chen, L.Y., Ellipsometric study of the optical properties of silver oxide prepared by reactive magnetron sputtering (2005) J. Korean Phys. Soc., 46, pp. S269-S275
  • Razumova, Y.A., Toropov, N.A., Vartanyan, T.A., Chemically synthesized silver nanorods intended for near IR applications (2018) Proc. SPIE, Nanophoton. VII, 10672, p. 1067233
  • Razumova, Y.A., Toropov, N.A., Vartanyan, T.A., Chemically synthesized gold and silver particles absorbing in the near-IR spectral range (2018) Opt. Spectrosc., 124, pp. 703-706
  • San Chan, Y., Don, M.M., Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi (2013) Mater. Sci. Eng. C, 33, pp. 282-288
  • Santillán, J.M.J., Scaffardi, L.B., Schinca, D.C., Quantitative optical extinction-based parametric method for sizing a single core–shell Ag–Ag2O nanoparticle (2011) J. Phys. D Appl. Phys., 44, pp. 105-1104
  • Scholl, J.A., Koh, A.L., Dionne, J.A., Quantum plasmon resonances of individual metallic nanoparticles (2012) Nature, 483, pp. 421-427
  • Slistan-Grijalva, A., Herrera-Urbina, R., Rivas-Silva, J.F., Ávalos-Borja, M., Castillón-Barraza, F.F., Posada-Amarillas, A., Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol (2005) Phys. E, 27, pp. 104-112
  • Sone, B.T., Manikandan, E., Gurib-Fakim, A., Maaza, M., Sm2O3 nanoparticles green synthesis via Callistemon viminalis' extract (2015) J. Alloys Compd., 650, pp. 357-362
  • Tomšovský, M., Kolařík, M., Pažoutová, S., Homolka, L., Molecular phylogeny of European Trametes (Basidiomycetes, Polyporales) species based on LSU and ITS (nrDNA) sequences (2006) Nova Hedwigia, 82, pp. 269-280
  • van de Hulst, H.C., Light Scattering by Small Particles (1957), Dover Press New York; Wu, D.Y., Zhang, M., Zhao, L.B., Huang, Y.F., Ren, B., Tian, Z.Q., Surface plasmon-enhanced photochemical reactions on noble metal nanostructures (2015) Sci. China: Chem., 58, pp. 574-585
  • Zonooz, N.F., Salouti, M., Extracellular biosynthesis of silver nanoparticles using cell filtrate of Streptomyces sp. ERI-3 (2011) Sci. Iran, 18, pp. 1631-1635

Citas:

---------- APA ----------
Kobashigawa, J.M., Robles, C.A., Martínez Ricci, M.L. & Carmarán, C.C. (2018) . Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii. Saudi Journal of Biological Sciences.
http://dx.doi.org/10.1016/j.sjbs.2018.09.006
---------- CHICAGO ----------
Kobashigawa, J.M., Robles, C.A., Martínez Ricci, M.L., Carmarán, C.C. "Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii" . Saudi Journal of Biological Sciences (2018).
http://dx.doi.org/10.1016/j.sjbs.2018.09.006
---------- MLA ----------
Kobashigawa, J.M., Robles, C.A., Martínez Ricci, M.L., Carmarán, C.C. "Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii" . Saudi Journal of Biological Sciences, 2018.
http://dx.doi.org/10.1016/j.sjbs.2018.09.006
---------- VANCOUVER ----------
Kobashigawa, J.M., Robles, C.A., Martínez Ricci, M.L., Carmarán, C.C. Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii. Saudi J. Biol. Sci. 2018.
http://dx.doi.org/10.1016/j.sjbs.2018.09.006