Artículo

Parini, E.; Saintier, N. "Shape derivative of the cheeger constant" (2015) ESAIM - Control, Optimisation and Calculus of Variations. 21(2):348-358
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper deals with the existence of the shape derivative of the Cheeger constant h 1 (Ω) of a bounded domain Ω. We prove that if Ω admits a unique Cheeger set, then the shape derivative of h 1 (Ω) exists, and we provide an explicit formula. A counter-example shows that the shape derivative may not exist without the uniqueness assumption. © EDP Sciences, SMAI 2014.

Registro:

Documento: Artículo
Título:Shape derivative of the cheeger constant
Autor:Parini, E.; Saintier, N.
Filiación:LATP, Aix-Marseille Université, 39 rue Joliot Curie, Marseille cedex 13, 13453, France
Instituto de Ciencias, University Nac. Gral Sarmiento, J. M. Gutierrez 1150, C.P. 1613 Los Polvorines, Pcia de Bs. As, Argentina
Dpto Matemática, University de Buenos Aires, Ciudad Universitaria, Pabellón I (1428), Buenos Aires, Argentina
Palabras clave:1-Laplacian.; CHEEGER constant; Shape derivative; 1-Laplacian; Bounded domain; Cheeger; Cheeger constant; Counter examples; Explicit formula; Shape derivatives; Optimization
Año:2015
Volumen:21
Número:2
Página de inicio:348
Página de fin:358
DOI: http://dx.doi.org/10.1051/cocv/2014018
Título revista:ESAIM - Control, Optimisation and Calculus of Variations
Título revista abreviado:Control Optimisation Calc. Var.
ISSN:12928119
CODEN:ECOVF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_12928119_v21_n2_p348_Parini

Referencias:

  • Alter, F., Caselles, V., Uniqueness of the Cheeger set of a convex body (2009) Nonlin. Anal., 70, pp. 32-44
  • Ambrosio, L., Fusco, N., Pallara, D., (2000) Functions of Bounded Variation and Free Discontinuity Problems, , Oxford University Press
  • Carlier, G., Comte, M., On a weighted total variation minimization problem (2007) J. Funct. Anal., 250, pp. 214-226
  • Caselles, V., Chambolle, A., Novaga, M., Some remarks on uniqueness and regularity of Cheeger sets (2010) Rendiconti del Seminario Matematico della Università di Padova, 123, pp. 191-202
  • Cheeger, J., (1970) A Lower Bound for the Smallest Eigenvalue of the Laplacian, Problems in Analysis: A Symposium in Honor of Salomon Bochner, pp. 195-199
  • Demengel, F., Functions locally almost 1-harmonic (2004) Appl. Anal., 83, pp. 865-896
  • Garcia-Azorero, J., Manfredi, J., Peral, I., Rossi, J.D., Steklov eigenvalues for the ∞-Laplacian (2006) Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 17, pp. 199-210
  • Garcia Melian, J., Sabina De Lis, J., On the perturbation of eigenvalues for the p-Laplacian (2001) C.R. Acad. Sci. Paris, 332, pp. 893-898
  • Giusti, E., Minimal surfaces and functions of bounded variation (1984) Monogr. Math., 80. , Birkhäuser Verlag, Basel
  • Hebey, E., Saintier, N., Stability and perturbations of the domain for the first eigenvalue of the 1-Laplacian (2006) Arch. Math., 86, pp. 340-351
  • Henrot, A., Pierre, M., (2005) Variation et Optimisation de Formes, , Springer
  • Kawohl, B., Fridman, V., Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant (2003) Comment. Math. Univ. Carolin., 44, pp. 659-667
  • Kawohl, B., Lachand-Robert, T., Characterization of Cheeger sets for convex subsets of the plane (2006) Pacific J. Math., 225, pp. 103-118
  • Kawohl, B., Schuricht, F., Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem (2007) Commun. Contemp. Math., 9, pp. 1-29
  • Krejčiřík, D., Pratelli, A., The Cheeger constant of curved strips (2011) Pacific J. Math., 254, pp. 309-333
  • Lamberti, P.D., A differentiability result for the first eigenvalue of the p-Laplacian upon domain perturbation (2003) Nonlinear Analysis and Applications: to V. Lakshmikantham on His 80 th Birthday, 1-2, pp. 741-754. , Kluwer Acad. Publ., Dordrecht
  • Navarro, J.C., Rossi, J.D., Saintier, N., San Antolin, A., The dependence of the first eigenvalue of the ∞-Laplacian with respect to the domain (2014) Glasg. Math. J., 56, pp. 241-249
  • Parini, E., An introduction to the Cheeger problem (2011) Surveys Math. Appl., 6, pp. 9-22
  • Rossi, J.D., Saintier, N., On the 1 st eigenvalue of the ∞-Laplacian with Neumann boundary conditions Houston J
  • Saintier, N., Estimates of the best Sobolev constant of the embedding of BV (Ω) into L 1 (∂Ω) and related shape optimization problems (2008) Nonlinear Anal, 69, pp. 2479-2491
  • Stredulinsky, E., Ziemer, W.P., Area minimizing sets subject to a volume constraint in a convex set (1997) J. Geom. Anal., 7, pp. 653-677

Citas:

---------- APA ----------
Parini, E. & Saintier, N. (2015) . Shape derivative of the cheeger constant. ESAIM - Control, Optimisation and Calculus of Variations, 21(2), 348-358.
http://dx.doi.org/10.1051/cocv/2014018
---------- CHICAGO ----------
Parini, E., Saintier, N. "Shape derivative of the cheeger constant" . ESAIM - Control, Optimisation and Calculus of Variations 21, no. 2 (2015) : 348-358.
http://dx.doi.org/10.1051/cocv/2014018
---------- MLA ----------
Parini, E., Saintier, N. "Shape derivative of the cheeger constant" . ESAIM - Control, Optimisation and Calculus of Variations, vol. 21, no. 2, 2015, pp. 348-358.
http://dx.doi.org/10.1051/cocv/2014018
---------- VANCOUVER ----------
Parini, E., Saintier, N. Shape derivative of the cheeger constant. Control Optimisation Calc. Var. 2015;21(2):348-358.
http://dx.doi.org/10.1051/cocv/2014018