Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level. © 2017 Elsevier Masson SAS

Registro:

Documento: Artículo
Título:Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency
Autor:Peschiutta, M.L.; Scholz, F.G.; Goldstein, G.; Bucci, S.J.
Filiación:Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, 9000, Argentina
Laboratorio de Ecología Funcional (LEF), Universidad de Buenos Aires (UBA), Argentina
Instituto de Ecología, Genética y Evolución de Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
University of Miami, Coral Gables, Florida, United States
Instituto Multidisciplinario de Biología Vegetal, IMBIV- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Vélez Sarsfield 1611, Córdoba, Argentina
Instituto de Biociencias de la Patagonia (INBIOP), CONICET-UNPSJB, (9000) Comodoro Rivadavia, Argentina
Palabras clave:Anti-herbivore defenses; Herbivory-induce resource sequestration; Leaf mass per area; Photosynthesis; Photosynthetic nitrogen use efficiency; Prunus avium; antiherbivore defense; biomass allocation; functional role; herbivore; herbivory; larva; leaf; nitrogen; nutrient use efficiency; phenol; photosynthesis; physiology; plant-herbivore interaction; woody plant; Hexapoda; Prunus avium
Año:2018
Volumen:86
Página de inicio:9
Página de fin:16
DOI: http://dx.doi.org/10.1016/j.actao.2017.11.007
Título revista:Acta Oecologica
Título revista abreviado:Acta Oecol.
ISSN:1146609X
CODEN:ACOEE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1146609X_v86_n_p9_Peschiutta

Referencias:

  • Aldea, M., Hamilton, J., Resti, J., Zangerl, A., Berenbaum, M., DeLucia, E., Indirect effects of insect herbivory on leaf gas exchange in soybean (2005) Plant Cell Environ., 28, pp. 402-411
  • Aldea, M., Hamilton, J., Resti, J., Zangerl, A., Berenbaum, M., Frank, T., DeLucia, E., Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood samplings (2006) Oecologia, 149, pp. 221-232
  • Bado, S., Dinámica poblacional de Caliroa cerasi L. (Hymenoptera: Tenthredinidae) en cultivos de cerezo (Prunus avium L.) del Valle Inferior del Río Chubut (Región Patagonia Sur-Argentina) (2010) Idesia, 28, pp. 51-60
  • Barua, D., Roberts, E., Methods for the volumetric estimation of tea tannin in green-leaf and black tea. A new alkaline permanganate method (1940) Biochem. J., 34, pp. 1524-1531
  • Brown, V., Lawton, J., Grubb, P., Herbivory and evolution of leaf size and shape (1991) Phil. Trans. R. Soc. Land B, 333, pp. 265-272
  • Carl, K., On the biology, ecology and population dynamic of Caliroa cerasi (L.) (Hym., Tenthredinidae) (1972) Z Angew. Entomol., 71, pp. 58-83
  • Casotti, G., Bradley, J., Leaf nitrogen and its effects on the rate of herbivory on selected eucalypts in the Jarrah forest (1991) For. Ecol. Manag., 41, pp. 167-177
  • Cattelino, P., Becher, C., Fuller, L., Construction and installation of homemade dendrometer bands (1986) North J Appl. For, 3, pp. 73-75
  • Cittadini, E., Sweet Cherries from the End of the World: Options and Constraints for Fruit Production Systems in South Patagonia, Argentina (2007), PhD thesis Wageningen University The Netherlands; Coley, P., Herbivory and defensive characteristics of tree species in a lowland tropical rain forest (1983) Ecol. Monogr., 53, pp. 209-233
  • Coley, P., Barone, J., Herbivory and plant defenses in tropical forests (1996) Ann. Rev. Ecol. Sys., 27, pp. 305-335
  • Cornelissen, T., Fernandes, G., Induced defenses in the neotropical tree Bauhinia brevipes (Vog.) to herbivory: effects of damage-induced changes on leaf quality and insect attack (2001) Tree, 15, pp. 236-241
  • Cornelissen, T., Stiling, P., Does low nutritional quality act as a plant defence? An experimental test of the slow-growth, high-mortality hypothesis (2006) Ecol. Entomol., 31, pp. 32-40
  • Coste, S., Roggy, J., Imbert, P., Born, C., Bonal, D., Dreyer, E., Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance (2005) Tree Physiol., 25, pp. 1127-1137
  • Dastmalchi, K., Dorman, D., Kosarb, M., Hiltunen, R., Chemical composition and in vitro antioxidant evaluation of a watersoluble Moldavian balm (Dracocephalum moldavica L.) extract (2007) LWT, 40 (240), pp. 239-248
  • Ellsworth, D., Reich, P., Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments (1992) Funct. Ecol., 6, pp. 423-435
  • Evans, J., Photosynthesis and nitrogen relationships in leaves of C3 plants (1989) Oecologia, 78, pp. 9-19
  • Evans, J., Seemann, J., The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences and control (1989) Photosynthesis, pp. 183-205. , W. Brigs Alan R. Liss New York, USA
  • Feeny, P., Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars (1970) Ecology, 51, pp. 565-581
  • Ferreira, T., Rasband, W., ImageJ User Guide (2012), ImageJ/Fiji 1; Field, C., Mooney, H., The photosynthesis–nitrogen relationship in wild plants (1986) On the Economy of Plant Form and Function, pp. 25-55. , T. Givnish Cambridge University Press Cambridge
  • Gleadow, R., Foley, W., Woodrow, I., Enhanced CO2 alters the relationship between photosynthesis and defense in cyanogenic Eucalyptus cladocalyx F (1998) J. Muell. Plant Cell Environ., 21, pp. 12-22
  • Gómez, S., Ferrieri, R., Schueller, M., Orians, C., Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato (2010) New Phytol., 188, pp. 835-844
  • Herms, D., Mattson, W., The dilemma of plants: to grow or defend (1992) Q. Rev. Biol., 67, pp. 283-335
  • Karban, R., Baldwin, I., Induced Responses to Herbivory (1997), The University of Chicago Press Chicago, IL; Kursar, T., Coley, P., Delayed greening in tropical leaves: an anti-herbivore defense? (1992) Biotropica, 24, pp. 256-262
  • Macedo, T., Peterson, R., Weaver, D., Morrill, W., Wheat stem sawfly, Cephus cinctus Norton, impact on wheat primary metabolism: an ecophysiological approach (2005) Environ. Entomol., 34, pp. 719-726
  • Marquis, R., Leaf herbivores decrease fitness of a tropical plant (1984) Science, 226, pp. 537-539
  • Maschinski, J., Whitham, T., The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing (1989) Am. Nat., 134, pp. 1-19
  • Mason, C., McGaughey, S., Donovan, L., Ontogeny strongly and differentially alters leaf economic and other key traits in three diverse Helianthus species (2013) J. Exp. Bot., 28, pp. 1-11
  • McNaughton, S., Compensatory plant growth as a response to herbivory (1983) Oikos, 40, pp. 329-336
  • Miller, G., Miller, E., Determination of nitrogen nitrogen in biological materials (1948) Anal. Chem., 20, pp. 481-488
  • Miller, R., Gleadow, R., Woodrow, I., Cyanogenesis in tropical Prunus turneriana: characterization, variation and response to low light (2004) Funct. Plant Biol., 31, pp. 491-503
  • Moles, A., Westoby, M., Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? (2000) Oikos, 90, pp. 517-524
  • Muñoz, M., Relevamiento de lotes productivos en la localidad de Los Antiguos (2004), CAP Delegación Los Antiguos Los Antiguos, Argentina; Naumann, I., Williams, M., Schmidt, S., Synopsis of the Tenthredinidae (Hymenoptera) in Australia, including two newly recorded, introduced sawfly species associated with willows (Salix spp.) (2002) Aust. J. Entomol., 41, pp. 1-6
  • Onoda, Y., Hikosaka, K., Hirose, T., Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency (2004) Funct. Ecol., 18, pp. 419-425
  • Orians, C.M., Thorn, A., Gómez, S., Herbivore-induced resource sequestration in plants: why bother? (2011) Oecologia, 167, pp. 1-9
  • Ostlie, K., Pedigo, L., Water loss from soybeans after simulated and actual insect defoliation (1984) Environ. Entomol., 13, pp. 1675-1680
  • Paige, K., Regrowth following ungulate herbivory in Ipomopsis aggregata: geographic evidence for overcompensation (1999) Oecologia, 118, pp. 316-323
  • Peschiutta, M., El impacto de la herbivoría por Caliroa cerasi (Hymenoptera: Tenthredinidae) sobre las relaciones hídricas, intercambio gaseoso, crecimiento y productividad del cerezo (Prunus avium L.) (2015), p. 224. , Facultad de Ciencias Exactas y Naturales, Departamento Ecología, Genética y Evolución. Universidad de Buenos Aires Buenos Aires; Peschiutta, M.L., Bucci, S.J., Scholz, F.G., Goldstein, G., Compensatory responses in plant-herbivore interactions: impacts of insects on leaf water relations (2016) Acta Oecol, 73, pp. 71-79
  • Poorter, H., Evans, J., Photosynthetic nitrogen-use efficiency of species that differ inherently in specific area (1998) Oecologia, 116, pp. 26-37
  • Poorter, H., Niinemets, Ü., Poorter, L., Wright, I., Villar, R., Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis (2009) New Phytol., 182, pp. 565-588
  • Read, Q., Moorhead, L., Swenson, N., Bailey, J., Sanders, N., Convergent effects of elevation on functional leaf traits within and among species (2014) Funct. Ecol., 28, pp. 37-45
  • Reich, P., Ellsworth, D., Walter, M., Vose, J., Gresham, C., Volin, J., Bowman, W., Generality of leaf trait relationships: a test across six biomes (1999) Ecology, 80, pp. 1955-1969
  • Reich, P., Walters, M., Ellsworth, D., Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area, and photosynthesis in maple and oak trees (1991) Plant Cell Environ., 14, pp. 251-259
  • Reich, P., Walters, M., Ellsworth, D., Uhl, C., Photosynthesis-nitrogen relations in Amazonian tree species. I. Patterns among species and communities (1994) Oecologia, 97, pp. 62-72
  • Ripullone, F., Grassi, G., Lauteri, M., Borghetti, M., Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus×euroamericana in a mini-stand experiment (2003) Plant Physiol., 23, pp. 137-144
  • San Martino, L., Manavella, F., Datos climáticos – Valle de Los Antiguos (Santa Cruz) (2004), INTA Los Antiguos; Santos Pimenta, L., Schilthuizen, M., Verpoorte, R., Choi, Y., Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using 1H-NMR Spectroscopy (2014) Phytochem. Anal., 25, pp. 122-126
  • Scogings, P.F., Hjältén, J., Skarpe, C., Secondary metabolites and nutrients of woody plants in relation to browsing intensity in African savannas (2011) Oecologia, 167, pp. 1063-1073
  • Stockhoff, B., Maximization of daily canopy photosynthesis: effects of herbivory on optimal nitrogen distribution (1994) J. Theor. Biol., 169, pp. 209-220
  • Takashima, T., Hikosaka, K., Hirose, T., Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species (2004) Plant Cell Environ., 27, pp. 1047-1054
  • Thomson, V., Cunningham, S., Ball, M., Nicotra, A., Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency (2003) Oecologia, 134, pp. 167-175
  • Thornton, B., Milland, P., Increased defoliation frequency depletes remobilization of nitrogen for leaf growth in grasses (1997) Ann. Bot., 80, pp. 89-95
  • Vanderklein, D., Reich, P., The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits (1999) New Phytol., 144, pp. 121-132
  • Venables, W.N., An Introduction to R Notes on R: a Programming Environment for Data Analysis and Graphics (2006); Wang, Y., Siemann, E., Wheeler, G.S., Zhu, L., Gu, X., Ding, J., Genetic variation in anti-herbivore chemical defences in an invasive plant (2012) J. Ecol., 100, pp. 894-904
  • Wright, I., Cannon, K., Relationships between leaf lifespan and structural defenses in a low-nutrient, sclerophyll flora (2001) Funct. Ecol., 15, pp. 351-359
  • Wright, I., Reich, P., Westoby, M., Ackerly, D., Baruch, Z., Bongers, F., Cavender-Bares, J., Diemer, M., The worldwide leaf economics spectrum (2004) Nature, 428, pp. 821-827
  • Xiang, S., Reich, P., Sun, S., Atkin, O., Contrasting leaf trait scaling relationships in tropical and temperate wet forest species (2013) Plant Cell Physiol., 27, pp. 522-534
  • Yoshizuka, E., Roach, D., Plastic growth responses to simulated herbivory (2011) Int. J. Plant Sci., 172, pp. 521-529
  • Zangerl, A., Hamilton, J., Miller, T., Crofts, A., Oxborough, K., Berenbaum, M., de Lucia, E., Impact of folivory on photosynthesis is greater than the sum of its holes (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 1088-1091

Citas:

---------- APA ----------
Peschiutta, M.L., Scholz, F.G., Goldstein, G. & Bucci, S.J. (2018) . Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency. Acta Oecologica, 86, 9-16.
http://dx.doi.org/10.1016/j.actao.2017.11.007
---------- CHICAGO ----------
Peschiutta, M.L., Scholz, F.G., Goldstein, G., Bucci, S.J. "Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency" . Acta Oecologica 86 (2018) : 9-16.
http://dx.doi.org/10.1016/j.actao.2017.11.007
---------- MLA ----------
Peschiutta, M.L., Scholz, F.G., Goldstein, G., Bucci, S.J. "Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency" . Acta Oecologica, vol. 86, 2018, pp. 9-16.
http://dx.doi.org/10.1016/j.actao.2017.11.007
---------- VANCOUVER ----------
Peschiutta, M.L., Scholz, F.G., Goldstein, G., Bucci, S.J. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency. Acta Oecol. 2018;86:9-16.
http://dx.doi.org/10.1016/j.actao.2017.11.007