Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Herein we report the synthesis, characterization and self-assembly properties of two new thiolactose based amphiphiles constructed on a di-lauroyl-l-tartaric acid scaffold that only differ in the length of the spacer by an ethylene glycol unit. Upon dissolution in hot water the amphiphiles give rise to different colloidal systems at 25 °C: the one with the shorter linker forms a supramolecular thermoreversible hydrogel at a concentration of 0.1 w/v% while the other renders a colloidal system at high dilution (0.005 w/v%). Dynamic Light Scattering, Electron Microscopy (TEM, SEM and E-SEM), fluorescence CMC determination, SAXS and Circular Dichroism experiments were used to characterize both systems. The experiments indicate that only the amphiphile carrying the shorter linker is able to form a crossed-linked network of micellar fibers and thus, a stable hydrogel is observed. The difference of an ethylene glycol unit in the spacer also causes the adoption of a different molecular assembly evidenced by the inversion of the self-assembled chiral arrangement. In addition, the amphiphiles were evaluated for their ability to bind to the PNA lectin using a turbidimetric method. Agglutination was observed in both cases, a process that was disrupted upon the addition of an excess of the disaccharide lactose. © 2017 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

Registro:

Documento: Artículo
Título:Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl-l-tartaric acid scaffold
Autor:Cano, M.E.; Di Chenna, P.H.; Lesur, D.; Wolosiuk, A.; Kovensky, J.; Uhrig, M.L.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón 2, Ciudad Universitaria, Buenos Aires, C1428EG, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-UBA, Unidad de Microanalisis y Metodos Fisicos Aplicados A la Quimica Organica (UMYMFOR), Buenos Aires, Argentina
Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), CNRS UMR 7378, Université de Picardie Jules Verne, 33 rue Saint Leu, Amiens Cedex, 80039, France
Gerencia Quimica-Centro Atomico Constituyentes-Comision Nacional de Energia Atomica-CONICET, Av. Gral. Paz 1499, San-Martín-Pcia-Buenos-Aires, B1650KNA, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, Buenos Aires, C1428EG, Argentina
Palabras clave:amphophile; dilauroyltartaric acid; ethylene glycol; hot water; lactose; lectin; molecular scaffold; tartaric acid derivative; unclassified drug; antigen antibody reaction; Article; chirality; circular dichroism; concentration (parameters); critical micelle concentration; dissolution; fluorescence spectroscopy; gelation; hydrogel; hydrogelation; lectin binding; photon correlation spectroscopy; priority journal; scanning electron microscopy; supramolecular chemistry; synthesis; temperature; transmission electron microscopy; X ray crystallography
Año:2017
Volumen:41
Número:23
Página de inicio:14754
Página de fin:14765
DOI: http://dx.doi.org/10.1039/c7nj02941a
Título revista:New Journal of Chemistry
Título revista abreviado:New J. Chem.
ISSN:11440546
CODEN:NJCHE
CAS:ethylene glycol, 107-21-1; lactose, 10039-26-6, 16984-38-6, 63-42-3, 64044-51-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11440546_v41_n23_p14754_Cano

Referencias:

  • Varki, A., Lowe, J.B., (2009) Essentials of Glycobiology, pp. 1-8. , in, ed. A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, Stanley, C. R. Bertozzi, G. W. Hart and M. Etzler, Cold Spring Harbor Laboratory Press, New York, 2nd edn
  • Lee, C., Lee, T., (1995) Acc. Chem. Res., 28, pp. 321-327
  • Varki, A., (1993) Glycobiology, 3, pp. 97-130
  • Gabius, H.-J., (2009) The Sugar Code: Fundamentals of Glycosciences, , Wiley-Blackwell, Weinheim
  • Lundquist, J.J., Toone, E.J., (2002) Chem. Rev., 102, pp. 555-578
  • Bernardi, A., Jiménez-Barbero, J., Casnati, A., De Castro, C., Darbre, T., Fieschi, F., Finne, J., Imberty, A., (2013) Chem. Soc. Rev., 42, pp. 4709-4727
  • Feng, D., Shaikh, A.S., Wang, F., (2016) ACS Chem. Biol., 11, pp. 850-863
  • Bhatia, S., Camacho, L.C., Haag, R., (2016) J. Am. Chem. Soc., 138, pp. 8654-8666
  • Krishnan, B.P., Raghu, S., Mukherjee, S., Sureshan, K.M., (2016) Chem. Commun., 52, pp. 14089-14092
  • Chabre, Y.M., Roy, R., (2010) Design and Creativity in Synthesis of Multivalent Neoglycoconjugates., , 63
  • Sansone, F., Casnati, A., (2013) Chem. Soc. Rev., 42, p. 4623
  • Tantakitti, F., Burk-Rafel, J., Cheng, F., Egnatchik, R., Owen, T., Hoffman, M., Weiss, D.N., Ratner, D.M., (2012) Langmuir, 28, pp. 6950-6959
  • Bojarová, P., Křen, V., (2016) Biomater. Sci., 4, pp. 1142-1160
  • Gingras, M., Chabre, Y.M., Roy, M., Roy, R., (2013) Chem. Soc. Rev., 42, p. 4823
  • Cagnoni, A.J., Varela, O., Gouin, S.G., Kovensky, J., Uhrig, M.L., (2011) J. Org. Chem., 76, pp. 3064-3077
  • Cagnoni, A.J., Varela, O., Uhrig, M.L., Kovensky, J., (2013) Eur. J. Org. Chem., pp. 972-983
  • Cagnoni, A.J., Kovensky, J., Uhrig, M.L., (2014) J. Org. Chem., 79, pp. 6456-6467
  • Cano, M.E., Agusti, R., Cagnoni, A.J., Tesoriero, M.F., Kovensky, J., Uhrig, M.L., De Lederkremer, R.M., (2014) Beilstein J. Org. Chem., 10, pp. 3073-3086
  • Cano, M.E., Varela, O., García-Moreno, M.I., García Fernández, J.M., Kovensky, J., Uhrig, M.L., (2017) Carbohydr. Res., 444, pp. 58-67
  • Driguez, H., (1997) Top. Curr. Chem., 187, pp. 85-116
  • Sorrenti, A., Illa, O., Ortuño, R.M., (2013) Chem. Soc. Rev., 42, p. 8200
  • Assali, M., Cid, J.J., Fernández, I., Khiar, N., (2013) Chem. Mater., 25, pp. 4250-4261
  • Sun, Z., Huang, Q., He, T., Li, Z., Zhang, Y., Yi, L., (2014) ChemPhysChem, 15, pp. 2421-2430
  • Yamanaka, M., Haraya, N., Yamamichi, S., (2011) Chem.-Asian J., 6, pp. 1022-1025
  • Kolb, H.C., Sharpless, K.B., (2003) Drug Discovery Today, 8, pp. 1128-1137
  • Meldal, M., Tomøe, C.W., (2008) Chem. Rev., 108, pp. 2952-3015
  • Roy, R., Murphy, P.V., Gabius, H.J., (2016) Molecules, 21, p. 629
  • Dal Bó, A.G., Soldi, V., Giacomelli, F.C., Jean, B., Pignot-Paintrand, I., Borsali, R., Fort, S., (2011) Soft Matter, 7, p. 3453
  • Dal Bó, A.G., Soldi, V., Giacomelli, F.C., Travelet, C., Borsali, R., Fort, S., (2014) Carbohydr. Res., 397, pp. 31-36
  • Surya Prakash Rao, H., Kamalraj, M., Swain, J., Mishra, A.K., (2014) RSC Adv., 4, p. 12175
  • Datta, S., Bhattacharya, S., (2015) Chem. Soc. Rev., 44, pp. 5596-5637
  • Shigemitsu, H., Hamachi, I., (2017) Acc. Chem. Res., 50, pp. 740-750
  • Bhattacharya, S., Acharya, S.N.G., (1999) Chem. Mater., 11, pp. 3504-3511
  • Clemente, M.J., Fitremann, J., Mauzac, M., Serrano, J.L., Oriol, L., (2011) Langmuir, 27, pp. 15236-15247
  • Clemente, M.J., Romero, P., Serrano, J.L., Fitremann, J., Oriol, L., (2012) Chem. Mater., 24, pp. 3847-3858
  • Gu, L., Faig, A., Abdelhamid, D., Uhrich, K., (2014) Acc. Chem. Res., 47, pp. 2867-2877
  • Ibatullin, F.M., Shabalin, K.A., Jänis, J.V., Shavva, A.G., (2003) Tetrahedron Lett., 44, pp. 7961-7964
  • Gouin, S.G., Kovensky, J., (2007) Tetrahedron Lett., 48, pp. 2875-2879
  • Dermer, C., George, O.C., (1972) Proc. Okla. Acad. Sci., 52, pp. 66-69
  • Basu Ray, G., Chakraborty, I., Moulik, S.P., (2006) J. Colloid Interface Sci., 294, pp. 248-254
  • Topel, Ö., Çakir, B.A., Budama, L., Hoda, N., (2013) J. Mol. Liq., 177, pp. 40-43
  • Wang, K.-R., An, H.-W., Wang, Y.-Q., Zhang, J.-C., Li, X.-L., (2013) Org. Biomol. Chem., 11, p. 1007
  • Pusey, P.N., Van Megen, W., (1989) Phys. A, 157, pp. 705-741
  • Rochas, C., Geissler, E., (2014) Macromolecules, 47, pp. 8012-8017
  • Schärtl, W., (2007) Light Scattering from Polymer Solutions and Nanoparticle Dispersions, , Springer Berlin Heidelberg
  • Dawn, A., Kumari, H., (2017) Chem.-Eur. J., , 10.1002/chem.201703374
  • Yang, C., Song, Z., Zhao, J., Hu, Z., Zhang, Y., Jiang, Q., (2017) Colloids Surf., A, 523, pp. 62-70
  • Dreiss, C.A., Feng, Y., (2017) Wormlike Micelles. Advances in Systems, Characterisation and Applications. RSC Soft Matter Series 6, , ed., Royal Society of Chemistry
  • Kline, S.R., (2006) J. Appl. Crystallogr., 39, pp. 895-900
  • Doucet, M., SasView Version 4.1.2, , 10.5281/zenodo.825675
  • Zhang, P., Ma, J., Kang, X., Liu, H., Chen, C., Zhang, Z., Zhang, J., Han, B., (2017) Chem. Commun., 53, pp. 2162-2165
  • Lis, H., Sharon, N., (1998) Chem. Rev., 98, pp. 637-674
  • Cairo, C.W., Gestwicki, J.E., Kanai, M., Kiessling, L.L., (2002) J. Am. Chem. Soc., 124, pp. 1615-1619

Citas:

---------- APA ----------
Cano, M.E., Di Chenna, P.H., Lesur, D., Wolosiuk, A., Kovensky, J. & Uhrig, M.L. (2017) . Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl-l-tartaric acid scaffold. New Journal of Chemistry, 41(23), 14754-14765.
http://dx.doi.org/10.1039/c7nj02941a
---------- CHICAGO ----------
Cano, M.E., Di Chenna, P.H., Lesur, D., Wolosiuk, A., Kovensky, J., Uhrig, M.L. "Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl-l-tartaric acid scaffold" . New Journal of Chemistry 41, no. 23 (2017) : 14754-14765.
http://dx.doi.org/10.1039/c7nj02941a
---------- MLA ----------
Cano, M.E., Di Chenna, P.H., Lesur, D., Wolosiuk, A., Kovensky, J., Uhrig, M.L. "Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl-l-tartaric acid scaffold" . New Journal of Chemistry, vol. 41, no. 23, 2017, pp. 14754-14765.
http://dx.doi.org/10.1039/c7nj02941a
---------- VANCOUVER ----------
Cano, M.E., Di Chenna, P.H., Lesur, D., Wolosiuk, A., Kovensky, J., Uhrig, M.L. Chirality inversion, supramolecular hydrogelation and lectin binding of two thiolactose amphiphiles constructed on a di-lauroyl-l-tartaric acid scaffold. New J. Chem. 2017;41(23):14754-14765.
http://dx.doi.org/10.1039/c7nj02941a