Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Natural fire regimes have been modified; therefore robust post-fire monitoring tools are needed to understand the post-fire recovery process. Satellites with high temporal resolution allow us to build time series of vegetation indices for monitoring post-fire vegetation recovery. One of the techniques used is to compare the time series of a burned plot with that of an unburned control plot. However, for its implementation it is necessary to select control plots in which the vegetation has the same structure and functioning than the plot burned before the fire. Previous study defined biological criteria to detect burned and unburned control plots with identical pre-fire vegetation functioning. Moreover, a non-parametric test routine of low statistical power was proposed to test them, this was based on the analysis of the QVI (Quotient Vegetation Index), calculated between NDVI (Normalized Difference Vegetation Index) time series of the burned and control site. However, currently there are autoregressive analysis techniques with greater statistical power. Therefore the aims were to propose six new statistical routines based on autoregressive test, and compare the performance of these with the non-parametric routine. We selected 13,700 forest plots and extracted the NDVI MODIS time series between 2002 and 2005. We randomly selected 43 reference plots, and through each routine, we compared each reference time series with the other 13,657 time series. We estimated the performance of the routines measuring the euclidian distance between the time series of the reference plot and the time series of the plots accepted for each routine. We also measured the quality and the amount of the QVI time series selected by each routine. Autoregressive routines showed better performance than the non-parametric routine, since they selected control plots with NDVI time series with greatest similarity with respect to the reference plots and QVI series with highest quality. © 2017, Universitat Politecnica de Valencia. All rights reserved.

Registro:

Documento: Artículo
Título:Control plot selection for studies of post-fire dynamics: Performance of non-parametric and autoregressive routines
Autor:Landi, M.A.; Ojeda, S.; di Bella, C.M.; Salvatierra, P.; Argañaraz, J.P.; Bellis, L.M.
Filiación:Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC y Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Córdoba, Argentina
Instituto Clima y Agua INTA Castelar, Hurlingham, Argentina
Depto. de Métodos Cuantitativos, Facultad de Agronomía- CONICET-UBA, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto Académico Pedagógico de Ciencias Humanas (IAPCH), Universidad Nacional de Villa María, Villa María, Argentina
Palabras clave:Control plot selection; Fire ecology; NDVI MODIS; NDVI time series analysis; Post-fire monitoring
Año:2017
Volumen:2017
Número:49 Special Issue
Página de inicio:79
Página de fin:90
DOI: http://dx.doi.org/10.4995/raet.2017.7116
Título revista:Revista de Teledeteccion
Título revista abreviado:Rev. Teledeteccion
ISSN:11330953
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11330953_v2017_n49SpecialIssue_p79_Landi

Referencias:

  • Alonso, A.M., Peña, D., Romo Urroz, J., Una revisión de los métodos de remuestreo en series temporales (2002) Estadística Española, 150, pp. 133-159
  • Baret, F., Guyot, G., Potential and limits of vegetation indices for LAI and APAR assessment (1991) Remote Sensing of Environment, 35, pp. 161-173. , https://doi.org/10.1016/0034-4257(91)90009-U
  • Box, G.E.P., Pierce, D.A., Distribution of Residual Autocorrelations in Autoregressive- Integrated Moving Average Time Series Models (1970) J. Am. Stat. Assoc, 65, pp. 1509-1526. , https://doi.org/10.1080/01621459.1970.10481180
  • Brockwell, P.J., Davis, R.A., (2010) Introduction to Time Series and Forecasting, , New York: Springer
  • Cabello, J., Fernández, N., Alcaraz-Segura, D., Oyonarte, C., Piñeiro, G., Altesor, A., Delibes, M., Paruelo, J.M., The ecosystem functioning dimension in conservation: Insights from remote sensing (2012) Biodiversity and Conservation, 21, pp. 3287-3305. , https://doi.org/10.1007/s10531-012-0370-7
  • Casady, G.M., Van Leeuwen, W.J.D., Marsh, S.E., Evaluating Post-wildfire Vegetation Regeneration as a Response to Multiple Environmental Determinants (2010) Environmental Modeling & Assessment, 15, pp. 295-307. , https://doi.org/10.1007/s10666-009-9210-x
  • Chatfield, C., (2000) Time-Series Forecasting, , https://doi.org/10.1201/9781420036206, Boca Raton, Florida: Chapman & Hall/CRC
  • Cromwel, J.B., Labys, W.C., Teraza, M., (1994) Univariate Test for Time Series Models, , https://doi.org/10.4135/9781412986458, California: Sage Publications
  • Di Bella, C.M., Fischer, M.A., Jobbágy, E.G., Fire patterns in north-eastern Argentina: Influences of climate and land use/cover (2011) International Journal of Remote Sensing, 32, pp. 4961-4971. , https://doi.org/10.1080/01431161.2010.494167
  • Di Mauro, B., Fava, F., Busetto, L., Crosta, G.F., Colombo, R., Post-fire resilience in the Alpine region estimated from MODIS satellite multispectral data (2014) Int. J. Appl. Earth Obs. and Geoinformation, 32, pp. 163-172. , https://doi.org/10.1016/j.jag.2014.04.010
  • Díaz-Delgado, R., Lloret, F., Pons, X., Terradas, J., Satellite Evidence of Decreasing Resilience in Mediterranean Plant Communities after Recurrent Wildfires (2002) Ecology, 83, pp. 2293-2303. , https://doi.org/10.1890/0012-9658(2002)083[2293:SEODRI]2.0.CO;2
  • Flannigan, M., Cantin, A.S., De Groot, W.J., Wotton, M., Newbery, A., Gowman, L.M., Global wildland fire season severity in the 21st century (2013) Forest Ecology and Management, 294, pp. 54-61. , https://doi.org/10.1016/j.foreco.2012.10.022
  • Fuller, W.A., (1996) Introduction to Statistical Time Series, , New York: Wiley
  • Gao, X., Huete, A.R., Ni, W., Miura, T., Optical– biophysical relationships of vegetation spectra without background contamination (2000) Remote Sensing of Environment, 74, pp. 609-620. , https://doi.org/10.1016/S0034-4257(00)00150-4
  • Giglio, L., (2010) MODIS Collection 5 Active Fire Product user’s Guide Version 2.4, , University of Maryland
  • Gitas, I., Mitri, G., Veraverbeke, S., Polychronaki, A., Advances in Remote Sensing of Post-Fire Vegetation Recovery Monitoring - (2012) Remote Sensing of Biomass - Principles and Applications, pp. 143-176. , https://doi.org/10.5772/20571, In T. Fatoyinbo (Ed.), Shangai: INTECH Open Access Publisher
  • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices (2002) Remote Sensing of Environment, 83, pp. 195-213. , https://doi.org/10.1016/S0034-4257(02)00096-2
  • Key, C.H., Ecological and sampling constraints on defining landscape fire severity (2006) Fire Ecology, 2, pp. 34-59. , https://doi.org/10.4996/fireecology.0202034
  • Kuenzer, C., Dech, S., Wagner, W., (2015) Remote Sensing Time Series, , https://doi.org/10.1007/978-3-319-15967-6, New York: Springer
  • Landi, M.A., Di Bella, C.M., Ojeda, S., Salvatierra, P., Argañaraz, J.P., Bellis, L.M., Selecting control sites for post-fire ecological studies using biological criteria and MODIS time series data (2017) Fire Ecology, 13 (2), pp. 1-17. , https://doi.org/10.4996/fireecology.130274623
  • Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P., A pixel based regeneration index using time series similarity and spatial context. Photogramm. Eng (2010) Remote Sens, 76, pp. 673-682. , https://doi.org/10.14358/PERS.76.6.673
  • Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Veraverbeke, S., Coppin, P., Assessing intraannual vegetation regrowth after fire using the pixel based regeneration index. ISPRS (2011) J. Photogramm. Remote Sens, 66, pp. 17-27. , https://doi.org/10.1016/j.isprsjprs.2010.08.004
  • McKenzie, D., Miller, C., Falk, D.A., (2011) The Landscape Ecology of Fire, , https://doi.org/10.1007/978-94-007-0301-8, New York: Springer
  • McLeod, A.I., Hipel, K.W., Bodo, B.A., Trend analysis methodology for water quality time series (1991) Environmetrics, 2, pp. 169-200. , https://doi.org/10.1002/env.3770020205
  • Moretin, P.A., Castro, T., (1987) Previsao De Séries Temporais, , Sao Pablo: Atual
  • Pérez-Cabello, F., Echeverría, M.T., Ibarra, P., De La Riva, J., Effects of fire on vegetation, soil and hydrogemorphological behavior in Mediterranean ecosystems (2009) Earth Observations of Wildland Fires in Mediterranean Ecosystems, pp. 111-128. , https://doi.org/10.1007/978-3-642-01754-4_9, E. Chuvieco (Ed.), Berlin: Springer
  • Poling, A., Fuqua, R.W., (1986) Research Methods in Applied Behavior Analysis, , https://doi.org/10.1007/978-1-4684-8786-2, Boston: Springer
  • Quinn, G.P., Keough, M.J., (2002) Experimental Design and Data Analysis for Biologists, , https://doi.org/10.1017/CBO9780511806384, Cambridge: Cambridge University Press
  • San-Miguel-Ayanz, J., Moreno, J.M., Camia, A., Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives (2013) Forest Ecology and Management, 294, pp. 11-22. , https://doi.org/10.1016/j.foreco.2012.10.050
  • Sutradhar, B.C., Macneil, I.B., Dagum, E.B., A simple test for stable seasonality (1995) Journal of Statistical Planning and Inference, 43, pp. 157-167. , https://doi.org/10.1016/0378-3758(94)00016-O
  • Van Leeuwen, W.J.D., Casady, G.M., Neary, D.G., Bautista, S., Alloza, J.A., Carmel, Y., Wittenberg, L., Orr, B.J., Monitoring post-wildfire vegetation response with remotely sensed time-series data in Spain, USA and Israel (2010) International Journal of Wildland Fire, 19, pp. 75-93. , https://doi.org/10.1071/WF08078
  • Wenze, Y., Huang, D., Tan, B., Stroeve, J.C., Shabanov, N.V., Knyazikhin, Y., Nemani, R.R., Myneni, R.B., Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000-2005 (2006) IEEE Trans. Geosci. Remote Sens, 44, pp. 1829-1842. , https://doi.org/10.1109/TGRS.2006.871214
  • Yaffee, R.A., McGee, M., (2000) An Introduction to Time Series Analysis and Forecasting: With Applications of SAS and SPSS, , New York: Academic Press
  • Yue, S., Pilon, P., Cavadias, G., Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series (2002) Journal of Hydrology, 259, pp. 254-271. , https://doi.org/10.1016/S0022-1694(01)00594-7

Citas:

---------- APA ----------
Landi, M.A., Ojeda, S., di Bella, C.M., Salvatierra, P., Argañaraz, J.P. & Bellis, L.M. (2017) . Control plot selection for studies of post-fire dynamics: Performance of non-parametric and autoregressive routines . Revista de Teledeteccion, 2017(49 Special Issue), 79-90.
http://dx.doi.org/10.4995/raet.2017.7116
---------- CHICAGO ----------
Landi, M.A., Ojeda, S., di Bella, C.M., Salvatierra, P., Argañaraz, J.P., Bellis, L.M. "Control plot selection for studies of post-fire dynamics: Performance of non-parametric and autoregressive routines " . Revista de Teledeteccion 2017, no. 49 Special Issue (2017) : 79-90.
http://dx.doi.org/10.4995/raet.2017.7116
---------- MLA ----------
Landi, M.A., Ojeda, S., di Bella, C.M., Salvatierra, P., Argañaraz, J.P., Bellis, L.M. "Control plot selection for studies of post-fire dynamics: Performance of non-parametric and autoregressive routines " . Revista de Teledeteccion, vol. 2017, no. 49 Special Issue, 2017, pp. 79-90.
http://dx.doi.org/10.4995/raet.2017.7116
---------- VANCOUVER ----------
Landi, M.A., Ojeda, S., di Bella, C.M., Salvatierra, P., Argañaraz, J.P., Bellis, L.M. Control plot selection for studies of post-fire dynamics: Performance of non-parametric and autoregressive routines . Rev. Teledeteccion. 2017;2017(49 Special Issue):79-90.
http://dx.doi.org/10.4995/raet.2017.7116