Artículo

Bianco, A.M.; Boente, G.; González-Manteiga, W.; Pérez-González, A."Plug-in marginal estimation under a general regression model with missing responses and covariates" (2019) Test. 28(1):106-146
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals. © 2018, Sociedad de Estadística e Investigación Operativa.

Registro:

Documento: Artículo
Título:Plug-in marginal estimation under a general regression model with missing responses and covariates
Autor:Bianco, A.M.; Boente, G.; González-Manteiga, W.; Pérez-González, A.
Filiación:Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IMAS, CONICET Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Departamento de Estatística, Análise Matemática e Optimización, Facultad de Matemáticas, Universidad de Santiago de Compostela, Campus Sur., Santiago de Compostela, 15706, Spain
Departamento de Estadística e Investigación Operativa, Universidad de Vigo, Campus Orense. Campus Universitario As Lagoas s/n, Ourense, 32004, Spain
Palabras clave:Fisher consistency; Kernel weights; L-estimators; Marginal functionals; Missing at random; Semiparametric models
Año:2019
Volumen:28
Número:1
Página de inicio:106
Página de fin:146
DOI: http://dx.doi.org/10.1007/s11749-018-0591-5
Handle:http://hdl.handle.net/20.500.12110/paper_11330686_v28_n1_p106_Bianco
Título revista:Test
Título revista abreviado:Test
ISSN:11330686
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11330686_v28_n1_p106_Bianco

Referencias:

  • Aerts, M., Claeskens, G., Hens, N., Molenberghs, G., Local multiple imputation (2002) Biometrika, 89, pp. 375-388
  • Bahadur, R.R., A note on quantiles in large samples (1966) Ann Math Stat, 37, pp. 577-580
  • Bali, L., (2012) Métodos Robustos De estimación De Componentes Principales Funcionales Y El Modelo De Componentes Principales Comunes, , http://cms.dm.uba.ar/academico/carreras/doctorado/2012/tesisBali.pdf, Ph. Thesis. Universidad de Buenos Aires (in spanish)
  • Bianco, A., Boente, G., González-Manteiga, W., Pérez-González, A., Estimation of the marginal location under a partially linear model with missing responses (2010) Comput Stat Data Anal, 54, pp. 546-564
  • Bianco, A., Spano, P., (2017) Robust inference for nonlinear regression models, , https://doi.org/10.1007/s11749-017-0570-2
  • Billingsley, P., (1968) Convergence of probability measures, , Wiley, New York
  • Boente, G., González-Manteiga, W., Pérez-González, A., Robust nonparametric estimation with missing data (2009) J Stat Plan Inference, 139, pp. 571-592
  • Bravo, F., Semiparametric estimation with missing covariates (2015) J Multivar Anal, 139, pp. 329-346
  • Bravo, F., Jacho-Chávez, D., Semiparametric quasi-likelihood estimation with missing data (2016) Commun Stat Theory Methods, 45, pp. 1345-1369
  • Burton, A., Altman, D.G., Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines (2004) Br J Cancer, 91, pp. 4-8
  • Chen, H., Chen, K., Selection of the splined variables and convergence rates in a partial spline model (1991) Can J Stat, 19, pp. 323-339
  • Chen, Q., Ibrahim, J., Chen, M., Senchaudhuri, P., Theory and inference for regression models with missing responses and covariates (2008) J Multivar Anal, 99, pp. 1302-1331
  • Chen, J., Shao, J., Nearest neighbor imputation for survey data (2000) J Off Stat, 16, pp. 113-131
  • Chen, S., Van Keilegom, I., Estimation in semiparametric models with missing data (2013) Ann Inst Math Stat, 65, pp. 785-805
  • Chen, X., Wan, A., Zhou, Y., Efficient quantile regression analysis with missing observations (2015) J Am Stat Assoc, 110, pp. 723-741
  • Cheng, P.E., Nonparametric estimation of mean functionals with data missing at random (1994) J Am Stat Assoc, 89, pp. 81-87
  • Cheng, P.E., Chu, C.K., Kernel estimation of distribution functions and quantiles with missing data (1996) Stat Sinica, 6, pp. 63-78
  • Cleveland, W., (1985) The elements of graphing data, , Bell Telephone Laboratories Inc., New Jersey
  • Collomb, G., Conditions nécessaires et suffisantes de convergence uniforme d’un estimateur de la régression, estimation des dérivées de la régression (1979) Comptes Rendus Academie de Sciencies de Paris, 228, pp. 161-163
  • Daniel, C., Wood, F., (1980) Fitting equations to data: computer analysis of multifactor data, , Wiley, New York
  • Díaz, I., Efficient estimation of quantiles in missing data models (2017) J Stat Plan Inference, 190, pp. 39-51
  • Fernholz, L., Smoothed versions of statistical functionals (1993) New directions in statistical data analysis and robustness, pp. 61-72. , Morgenthaler S, Ronchetti E, Stahel W, (eds), Birkhauser, Basel
  • Härdle, W., Liang, H., Gao, J., (2000) Partially linear models, , Springer, Heidelberg
  • Härdle, W., Müller, M., Sperlich, S., Werwatz, A., (2004) Nonparametric and semiparametric models, , Springer, Heidelberg
  • He, X., Zhu, Z., Fung, W., Estimation in a semiparametric model for longitudinal data with unspecified dependence structure (2002) Biometrika, 89, pp. 579-590
  • Hirano, K., Imbens, G., Ridder, G., Efficient estimation of average treatment effects using the estimated propensity score (2003) Econometrica, 71, pp. 1161-1189
  • Horvitz, D.G., Thompson, D.J., A generalization of sampling without replacement from a finite universe (1952) J Am Stat Assoc, 47, pp. 663-685
  • Huber, P., Ronchetti, E., (2009) Robust statistics, , Wiley, New York
  • Liang, H., Wang, S., Robins, J., Carroll, R., Estimation in partially linear models with missing covariates (2004) J Am Stat Assoc, 99, pp. 357-367
  • Little, R., Regression with missing X’s: a review (1992) J Am Stat Assoc, 87, pp. 1227-1237
  • Little, R., Rubin, D., (2002) Statistical analysis with missing data, , Wiley, New York
  • Müller, U., Estimating linear functionals in nonlinear regression with responses missing at random (2009) Ann Stat, 37, pp. 2245-2277
  • Pollard, D., (1984) Convergence of stochastic processes, , Springer, New York
  • Robinson, P., Root-n-consistent semiparametric regression (1988) Econometrica, 56, pp. 931-954
  • Schumaker, L., (1981) Spline functions: basic theory, , Wiley, New York
  • Sued, M., Yohai, V., Robust location estimation with missing data (2013) Can J Stat, 41, pp. 111-132
  • Tukey, J.W., (1977) Exploratory data analysis, , Addison-Wesley, Reading
  • Varadarajan, V.S., On the convergence of sample probability distributions (1958) Sanky a ¯ Indian J Stat, 19, pp. 23-26
  • Wang, Q., Linton, O., Härdle, W., Semiparametric regression analysis with missing response at random (2004) J Am Stat Assoc, 99, pp. 334-345
  • Wang, W., Rao, J., Empirical likelihood-based inference under imputation for missing response data (2002) Ann Stat, 30, pp. 896-924
  • Yang, S.S., A smooth nonparametric estimator of a quantile function (1985) J Am Stat Assoc, 80, pp. 1004-1011
  • Yates, F., The analysis of replicated experiments when the field results are incomplete (1933) Empire J Exp Agric, 1, pp. 129-142
  • Zhang, Z., Chen, Z., Troendle, J.F., Zhang, J., Causal inference on quantiles with an obstetric application (2012) Biometrics, 68, pp. 697-706
  • Zhou, Y., Wan, A.T.K., Wang, X., Estimating equation inference with missing data (2008) J Am Stat Assoc, 103, pp. 1187-1199

Citas:

---------- APA ----------
Bianco, A.M., Boente, G., González-Manteiga, W. & Pérez-González, A. (2019) . Plug-in marginal estimation under a general regression model with missing responses and covariates. Test, 28(1), 106-146.
http://dx.doi.org/10.1007/s11749-018-0591-5
---------- CHICAGO ----------
Bianco, A.M., Boente, G., González-Manteiga, W., Pérez-González, A. "Plug-in marginal estimation under a general regression model with missing responses and covariates" . Test 28, no. 1 (2019) : 106-146.
http://dx.doi.org/10.1007/s11749-018-0591-5
---------- MLA ----------
Bianco, A.M., Boente, G., González-Manteiga, W., Pérez-González, A. "Plug-in marginal estimation under a general regression model with missing responses and covariates" . Test, vol. 28, no. 1, 2019, pp. 106-146.
http://dx.doi.org/10.1007/s11749-018-0591-5
---------- VANCOUVER ----------
Bianco, A.M., Boente, G., González-Manteiga, W., Pérez-González, A. Plug-in marginal estimation under a general regression model with missing responses and covariates. Test. 2019;28(1):106-146.
http://dx.doi.org/10.1007/s11749-018-0591-5