Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A search for dark matter (DM) particles produced in association with a hadronically decaying vector boson is performed using pp collision data at a centre-of-mass energy of s=13 TeV corresponding to an integrated luminosity of 36.1 fb −1 , recorded by the ATLAS detector at the Large Hadron Collider. This analysis improves on previous searches for processes with hadronic decays of W and Z bosons in association with large missing transverse momentum (mono-W/Z searches) due to the larger dataset and further optimization of the event selection and signal region definitions. In addition to the mono-W/Z search, the as yet unexplored hypothesis of a new vector boson Z′ produced in association with dark matter is considered (mono-Z′ search). No significant excess over the Standard Model prediction is observed. The results of the mono-W/Z search are interpreted in terms of limits on invisible Higgs boson decays into dark matter particles, constraints on the parameter space of the simplified vector-mediator model and generic upper limits on the visible cross sections for W/Z+DM production. The results of the mono-Z′ search are shown in the framework of several simplified-model scenarios involving DM production in association with the Z′ boson.[Figure not available: see fulltext.]. © 2018, The Author(s).

Registro:

Documento: Artículo
Título:Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at √s=13 TeV with the ATLAS detector
Autor:Aaboud, M. et al.
Este artículo contiene 2917 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 2917 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Palabras clave:Beyond Standard Model; Dark matter; Hadron-Hadron scattering (experiments)
Año:2018
Volumen:2018
Número:10
DOI: http://dx.doi.org/10.1007/JHEP10(2018)180
Título revista:Journal of High Energy Physics
Título revista abreviado:J. High Energy Phys.
ISSN:11266708
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11266708_v2018_n10_p_Aaboud

Referencias:

  • Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at √s = 13 TeV with the ATLAS detector (2016) Phys. Lett. B, 763, p. 251. , INSPIRE
  • Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at √s = 13 TeV (2018) Phys. Rev. D, 97. , INSPIRE
  • Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at √s = 8 TeV with the ATLAS detector (2014) Phys. Rev. Lett, 112. , INSPIRE
  • Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets (2016) JHEP, 12. , INSPIRE
  • Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets (2017) JHEP, 8, p. 035
  • Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector (2015) JHEP, 11, p. 206. , INSPIRE
  • Search for invisible decays of the Higgs boson produced in association with a hadronically decaying vector boson in pp collisions at √s = 8 TeV with the ATLAS detector (2015) Eur. Phys. J. C, 75, p. 337. , INSPIRE
  • Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes (2014) Eur. Phys. J. C, 74, p. 2980. , INSPIRE
  • de Florian, D., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, , INSPIRE
  • Antoniadis, I., Tuckmantel, M., Zwirner, F., Phenomenology of a leptonic goldstino and invisible Higgs boson decays (2005) Nucl. Phys. B, 707, p. 215. , hep-ph/0410165, INSPIRE, and, (,), [,] [,]
  • Arkani-Hamed, N., Dimopoulos, S., Dvali, G.R., March-Russell, J., Neutrino masses from large extra dimensions (2001) Phys. Rev. D, 65. , INSPIRE
  • Datta, A., Huitu, K., Laamanen, J., Mukhopadhyaya, B., Invisible Higgs in theories of large extra dimensions (2004) Phys. Rev. D, 70. , INSPIRE
  • Kanemura, S., Matsumoto, S., Nabeshima, T., Okada, N., Can WIMP Dark Matter overcome the Nightmare Scenario? (2010) Phys. Rev., 500. , [] [INSPIRE]
  • Djouadi, A., Lebedev, O., Mambrini, Y., Quevillon, J., Implications of LHC searches for Higgs-portal dark matter (2012) Phys. Lett., B 709, p. 65. , [] [INSPIRE]
  • Searches for invisible decays of the Higgs boson in pp collisions at √s = 7, 8 and 13 TeV (2017) JHEP, 2, p. 135. , INSPIRE
  • Autran, M., Bauer, K., Lin, T., Whiteson, D., Searches for dark matter in events with a resonance and missing transverse energy (2015) Phys. Rev., 500. , [] [INSPIRE]
  • The ATLAS Experiment at the CERN Large Hadron Collider (2008) JINST, 3. , INSPIRE
  • ATLAS Insertable B-Layer Technical Design Report, , CERN-LHCC-2010-013, ATLAS-TDR-019
  • ATLAS Insertable B-Layer Technical Design Report Addendum, , CERN-LHCC-2012-009, ATLAS-TDR-19-ADD-1
  • Performance of the ATLAS Trigger System in 2015 (2017) Eur. Phys. J. C, 77, p. 317. , INSPIRE
  • Buchmueller, O., Dolan, M.J., Malik, S.A., McCabe, C., Characterising dark matter searches at colliders and direct detection experiments: Vector mediators (2015) JHEP, 1, p. 037. , [] [INSPIRE]
  • Abercrombie, D., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, , INSPIRE
  • Agostinelli, S., GEANT4: A Simulation toolkit (2003) Nucl. Instrum. Meth. A, 506, p. 250. , INSPIRE
  • The ATLAS Simulation Infrastructure (2010) Eur. Phys. J. C, 70, p. 823. , INSPIRE
  • Sjöstrand, T., Mrenna, S., Skands, P.Z., A Brief Introduction to PYTHIA 8.1 (2008) Comput. Phys. Commun, 178, p. 852. , INSPIRE
  • Summary of ATLAS PYTHIA 8 tunes (2012) ATL-PHYS-PUB
  • Martin, A.D., Stirling, W.J., Thorne, R.S., Watt, G., Parton distributions for the LHC (2009) Eur. Phys. J., 100, p. 189. , [] [INSPIRE]
  • Alwall, J., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations (2014) JHEP, 7, p. 079. , [] [INSPIRE]
  • ATLAS Pythia 8 tunes to 7 TeV data (2014) ATL-PHYS-PUB
  • Ball, R.D., Parton distributions for the LHC Run II (2015) JHEP, 4. , INSPIRE
  • Albert, A., Recommendations of the LHC Dark Matter Working Group: Comparing LHC Searches for Heavy Mediators of Dark Matter Production in Visible and Invisible Decay Channels, , INSPIRE
  • Search for Light Resonances Decaying to Boosted Quark Pairs and Produced in Association with a Photon Or a Jet in Proton-Proton Collisions at √s = 13 Tev with the ATLAS Detector, , INSPIRE
  • Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at √s = 13 TeV (2018) JHEP, 1. , INSPIRE
  • Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √s = 13 TeV using the ATLAS detector (2016) Phys. Rev. D, 94. , INSPIRE
  • Search for dijet resonances in proton-proton collisions at s = 13 TeV and constraints on dark matter and other models (2017) Phys. Lett. B, 769, p. 520. , INSPIRE
  • Search for dijet resonances in proton-proton collisions at s = 13 TeV and constraints on dark matter and other models (2017) Phys. Lett. B, 772, p. 882
  • Nason, P., A New method for combining NLO QCD with shower Monte Carlo algorithms (2004) JHEP, 11. , INSPIRE
  • Frixione, S., Nason, P., Oleari, C., Matching NLO QCD computations with Parton Shower simulations: the POWHEG method (2007) JHEP, 11, p. 070. , [] [INSPIRE]
  • Alioli, S., Nason, P., Oleari, C., Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX (2010) JHEP, 6, p. 043. , [] [INSPIRE]
  • Measurement of inclusive and differential cross sections in the H → ZZ * → 4ℓ decay channel in pp collisions at √s = 13 TeV with the ATLAS detector (2017) JHEP, 10, p. 132. , INSPIRE
  • Evidence for the H → b b ¯ decay with the ATLAS detector (2017) JHEP, 12. , INSPIRE
  • Gleisberg, T., Event generation with SHERPA 1.1 (2009) JHEP, 2. , INSPIRE
  • Gleisberg, T., Hoeche, S., Comix, a new matrix element generator (2008) JHEP, 12, p. 039. , [] [INSPIRE]
  • Cascioli, F., Maierhofer, P., Pozzorini, S., Scattering Amplitudes with Open Loops (2012) Phys. Rev. Lett., 108, p. 111601. , [] [INSPIRE]
  • Schumann, S., Krauss, F., A Parton shower algorithm based on Catani-Seymour dipole factorisation (2008) JHEP, 3, p. 038. , [] [INSPIRE]
  • Hoeche, S., Krauss, F., Schonherr, M., Siegert, F., QCD matrix elements + parton showers: The NLO case (2013) JHEP, 4, p. 027. , [] [INSPIRE]
  • Melnikov, K., Petriello, F., Electroweak gauge boson production at hadron colliders through O (α s 2) (2006) Phys. Rev. D, 74, p. 114017. , INSPIRE
  • Lai, H.-L., New parton distributions for collider physics (2010) Phys. Rev., 500. , [] [INSPIRE]
  • Artoisenet, P., Frederix, R., Mattelaer, O., Rietkerk, R., Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations (2013) JHEP, 3, p. 015. , [] [INSPIRE]
  • Sjöstrand, T., Mrenna, S., Skands, P.Z., PYTHIA 6.4 Physics and Manual (2006) JHEP, 5. , INSPIRE
  • Pumplin, J., Stump, D.R., Huston, J., Lai, H.L., Nadolsky, P.M., Tung, W.K., New generation of parton distributions with uncertainties from global QCD analysis (2002) JHEP, 7. , INSPIRE
  • Skands, P.Z., Tuning Monte Carlo Generators: The Perugia Tunes (2010) Phys. Rev., 500. , [] [INSPIRE]
  • Lange, D.J., The EvtGen particle decay simulation package (2001) Nucl. Instrum. Meth., A 462, p. 152. , [INSPIRE]
  • Czakon, M., Fiedler, P., Mitov, A., Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(α S 4 ) (2013) Phys. Rev. Lett., 110, p. 252004. , [] [INSPIRE]
  • Stelzer, T., Sullivan, Z., Willenbrock, S., Single top quark production via W-gluon fusion at next-to-leading order (1997) Phys. Rev. D, 56, p. 5919. , hep-ph/9705398, INSPIRE, and, (,), [,] [,]
  • Stelzer, T., Sullivan, Z., Willenbrock, S., Single top quark production at hadron colliders (1998) Phys. Rev. D, 58. , INSPIRE
  • Smith, M.C., Willenbrock, S., QCD and Yukawa corrections to single top quark production via q q ¯ → t b ¯ (1996) Phys. Rev. D, 54, p. 6696. , hep-ph/9604223, INSPIRE, and, (,), [,] [,]
  • Kidonakis, N., (2013) Top Quark Production, DESY-PROC, , 03, INSPIRE
  • Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 (2017) Eur. Phys. J. C, 77, p. 490. , INSPIRE
  • Cacciari, M., Salam, G.P., Soyez, G., The anti-k t jet clustering algorithm (2008) JHEP, 4, p. 063. , [] [INSPIRE]
  • Cacciari, M., Salam, G.P., Soyez, G., FastJet User Manual (2012) Eur. Phys. J., 100, p. 1896. , [] [INSPIRE]
  • Tagging and Suppression of Pileup Jets with the ATLAS Detector, , ATLAS-CONF-2014-018
  • Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at √s = 13 TeV with the ATLAS detector (2017) Phys. Rev. D, 96. , [INSPIRE]
  • Data-Driven Determination of the Energy Scale and Resolution of Jets Reconstructed in the ATLAS Calorimeters Using Dijet and Multijet Events at √s = 8 Tev, , ATLAS-CONF-2015-017
  • Performance of b-Jet Identification in the ATLAS Experiment (2016) JINST, 11. , [INSPIRE]
  • Optimisation of the ATLAS B-Tagging Performance for the 2016 LHC Run, , ATL-PHYS-PUB-2016-012
  • Commissioning of the ATLAS B-Tagging Algorithms Using Tt Events in Early Run-2 Data, , ATL-PHYS-PUB-2015-039
  • Identification of boosted, hadronically decaying W bosons and comparisons with ATLAS data taken at √s = 8 TeV (2016) Eur. Phys. J. C, 76, p. 154. , [INSPIRE]
  • Identification of Boosted, Hadronically-Decaying W and Z Bosons in √s = 13 Tev Monte Carlo Simulations for ATLAS, , ATL-PHYS-PUB-2015-033
  • Krohn, D., Thaler, J., Wang, L.-T., Jet Trimming (2010) JHEP, 2, p. 084. , [] [INSPIRE]
  • Jet Mass Reconstruction with the ATLAS Detector in Early Run 2 Data, , ATLAS-CONF-2016-035
  • Larkoski, A.J., Moult, I., Neill, D., Power Counting to Better Jet Observables (2014) JHEP, 12, p. 009. , [] [INSPIRE]
  • Larkoski, A.J., Salam, G.P., Thaler, J., Energy Correlation Functions for Jet Substructure (2013) JHEP, 6, p. 108. , [] [INSPIRE]
  • Performance of jet substructure techniques for large-R jets in proton-proton collisions at √s = 7 TeV using the ATLAS detector (2013) JHEP, 9, p. 076. , [INSPIRE]
  • Performance of Jet Substructure Techniques in Early √s = 13 Tev Pp Collisions with the ATLAS Detector, , ATLAS-CONF-2015-035
  • Flavor Tagging with Track Jets in Boosted Topologies with the ATLAS Detector, , ATL-PHYS-PUB-2014-013
  • Boosted Higgs (→ B B ¯) Boson Identification with the ATLAS Detector at √s = 13 Tev, , ATLAS-CONF-2016-039
  • Cacciari, M., Salam, G.P., Soyez, G., The Catchment Area of Jets (2008) JHEP, 4, p. 005. , [] [INSPIRE]
  • Electron efficiency measurements with the ATLAS detector using 2012 LHC proton-proton collision data (2017) Eur. Phys. J. C, 77, p. 195. , [INSPIRE]
  • Electron Efficiency Measurements with the ATLAS Detector Using the 2015 LHC Proton-Proton Collision Data, , ATLAS-CONF-2016-024
  • Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data (2014) Eur. Phys. J. C, 74, p. 3071. , [INSPIRE]
  • Electron and Photon Energy Calibration with the ATLAS Detector Using Data Collected in 2015 at √s = 13 Tev, , ATL-PHYS-PUB-2016-015
  • Muon reconstruction performance of the ATLAS detector in proton-proton collision data at √s = 13 TeV (2016) Eur. Phys. J. C, 76, p. 292. , [INSPIRE]
  • Performance of Missing Transverse Momentum Reconstruction with the ATLAS Detector Using Proton-Proton Collisions at √s = 13 Tev, , INSPIRE
  • Performance of Top Quark and W Boson Tagging in Run 2 with ATLAS, , ATLAS-CONF-2017-064
  • Luminosity determination in pp collisions at √s = 8 TeV using the ATLAS detector at the LHC (2016) Eur. Phys. J. C, 76, p. 653. , [INSPIRE]
  • Cowan, G., Cranmer, K., Gross, E., Vitells, O., Asymptotic formulae for likelihood-based tests of new physics (2011) Eur. Phys. J. C, 71, p. 1554. , [INSPIRE]
  • Cowan, G., Cranmer, K., Gross, E., Vitells, O., Asymptotic formulae for likelihood-based tests of new physics (2013) Eur. Phys. J. C, 73, p. 2501
  • Read, A.L., Presentation of search results: The CL(s) technique (2002) J. Phys., G 28, p. 2693. , [INSPIRE]
  • Hinshaw, G., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results (2013) Astrophys. J. Suppl., 208, p. 19. , [INSPIRE]
  • Adam, R., Planck 2015 results. I. Overview of products and scientific results (2016) Astron. Astrophys, 594, p. A1. , [INSPIRE]
  • Backović, M., Martini, A., Mattelaer, O., Kong, K., Mohlabeng, G., Direct Detection of Dark Matter with MadDM v.2.0 (2015) Phys. Dark Univ, 37, pp. 9-10. , INSP IRE
  • Gross, E., Vitells, O., Trial factors for the look elsewhere effect in high energy physics (2010) Eur. Phys. J., 100, p. 525. , [] [INSPIRE]
  • (2016) ATLAS Computing Acknowledgements

Citas:

---------- APA ----------
(2018) . Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at √s=13 TeV with the ATLAS detector. Journal of High Energy Physics, 2018(10).
http://dx.doi.org/10.1007/JHEP10(2018)180
---------- CHICAGO ----------
Aaboud, M. "Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at √s=13 TeV with the ATLAS detector" . Journal of High Energy Physics 2018, no. 10 (2018).
http://dx.doi.org/10.1007/JHEP10(2018)180
---------- MLA ----------
Aaboud, M. "Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at √s=13 TeV with the ATLAS detector" . Journal of High Energy Physics, vol. 2018, no. 10, 2018.
http://dx.doi.org/10.1007/JHEP10(2018)180
---------- VANCOUVER ----------
Aaboud, M. Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys. 2018;2018(10).
http://dx.doi.org/10.1007/JHEP10(2018)180