Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Abstract: In this work we revisit the E8× ℝ+ generalised Lie derivative encoding the algebra of diffeomorphisms and gauge transformations of compactifications of M-theory on eight-dimensional manifolds, by extending certain features of the E7× ℝ+ one. Compared to its Ed× ℝ+, d ≤ 7 counterparts, a new term is needed for consistency. However, we find that no compensating parameters need to be introduced, but rather that the new term can be written in terms of the ordinary generalised gauge parameters by means of a connection. This implies that no further degrees of freedom, beyond those of the field content of the E8 group, are needed to have a well defined theory. We discuss the implications of the structure of the E8× ℝ+ generalised transformation on the construction of the d = 8 generalised geometry. Finally, we suggest how to lift the generalised Lie derivative to eleven dimensions. © 2015, The Author(s).

Registro:

Documento: Artículo
Título:On the exceptional generalised Lie derivative for d ≥ 7
Autor:Rosabal, J.A.
Filiación:Departamento de Física, Universidad de Buenos Aires CONICET-UBA, Pabellón I, Ciudad Universitaria, Buenos Aires, Argentina
Institut de Physique Théorique, CEA/ Saclay, Gif-sur-Yvette Cedex, 91191, France
Palabras clave:Flux compactifications; M-Theory; String Duality
Año:2015
Volumen:2015
Número:9
DOI: http://dx.doi.org/10.1007/JHEP09(2015)153
Título revista:Journal of High Energy Physics
Título revista abreviado:J. High Energy Phys.
ISSN:11266708
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11266708_v2015_n9_p_Rosabal

Referencias:

  • Hull, C.M., Townsend, P.K., Unity of superstring dualities (1995) Nucl. Phys., B 438, p. 109. , [hep-th/9410167] [INSPIRE]
  • West, P.C., E<inf>11</inf> and M-theory (2001) Class. Quant. Grav., 18, p. 4443. , [hep-th/0104081] [INSPIRE]
  • Riccioni, F., West, P.C., The E<inf>11</inf> origin of all maximal supergravities (2007) JHEP, 7, p. 063. , [arXiv:0705.0752] [INSPIRE]
  • Hull, C., Zwiebach, B., Double field theory (2009) JHEP, 9, p. 099. , [arXiv:0904.4664] [INSPIRE]
  • Duff, M.J., Duality rotations in string theory (1990) Nucl. Phys., B 335, p. 610. , [INSPIRE]
  • Tseytlin, A.A., Duality symmetric formulation of string world sheet dynamics (1990) Phys. Lett., B 242, p. 163. , [INSPIRE]
  • Tseytlin, A.A., Duality symmetric closed string theory and interacting chiral scalars (1991) Nucl. Phys., B 350, p. 395. , [INSPIRE]
  • Siegel, W., Two vierbein formalism for string inspired axionic gravity (1993) Phys. Rev., D 47, p. 5453. , [hep-th/9302036] [INSPIRE]
  • Siegel, W., Superspace duality in low-energy superstrings (1993) Phys. Rev., D 48, p. 2826. , [hep-th/9305073] [INSPIRE]
  • Hitchin, N., Generalized Calabi-Yau manifolds (2003) Quart. J. Math., 54, p. 281. , [math.DG/0209099] [INSPIRE]
  • Coimbra, A., Strickland-Constable, C., Waldram, D., Supergravity as generalised geometry I: type II theories (2011) JHEP, 11, p. 091. , [arXiv:1107.1733] [INSPIRE]
  • Graña, M., Marques, D., Gauged double field theory (2012) JHEP, 4, p. 020. , [arXiv:1201.2924] [INSPIRE]
  • Dibitetto, G., Fernandez-Melgarejo, J.J., Marques, D., Roest, D., Duality orbits of non-geometric fluxes (2012) Fortschr. Phys., 60, p. 1123. , [arXiv:1203.6562] [INSPIRE]
  • Aldazabal, G., Marques, D., Núñez, C., Double field theory: a pedagogical review (2013) Class. Quant. Grav., 30, p. 163001. , [arXiv:1305.1907] [INSPIRE]
  • Blumenhagen, R., Hassler, F., Lüst, D., Double field theory on group manifolds (2015) JHEP, 2, p. 001. , [arXiv:1410.6374] [INSPIRE]
  • Betz, A., Blumenhagen, R., Lüst, D., Rennecke, F., A note on the CFT origin of the strong constraint of DFT (2014) JHEP, 5, p. 044. , [arXiv:1402.1686] [INSPIRE]
  • Cederwall, M., The geometry behind double geometry (2014) JHEP, 9, p. 070. , [arXiv:1402.2513] [INSPIRE]
  • Hull, C.M., Generalised geometry for M-theory (2007) JHEP, 7, p. 079. , [hep-th/0701203] [INSPIRE]
  • Pacheco, P.P., Waldram, D., M-theory, exceptional generalised geometry and superpotentials (2008) JHEP, 9, p. 123. , [arXiv:0804.1362] [INSPIRE]
  • Coimbra, A., Strickland-Constable, C., Waldram, D., Ed(×,ℝ generalised geometry, connections and M theory (2014) JHEP, 2, p. 054. , [arXiv:1112.3989] [INSPIRE]
  • Coimbra, A., Strickland-Constable, C., Waldram, D., Supergravity as generalised geometry II: and M theory (2014) JHEP, 3, p. 019. , [arXiv:1212.1586] [INSPIRE]
  • Berman, D.S., Perry, M.J., Generalized geometry and M-theory (2011) JHEP, 6, p. 074. , [arXiv:1008.1763] [INSPIRE]
  • Berman, D.S., Godazgar, H., Perry, M.J., SO(5, 5) duality in M-theory and generalized geometry (2011) Phys. Lett., B 700, p. 65. , [arXiv:1103.5733] [INSPIRE]
  • Berman, D.S., Godazgar, H., Perry, M.J., West, P., Duality invariant actions and generalised geometry (2012) JHEP, 2, p. 108. , [arXiv:1111.0459] [INSPIRE]
  • Aldazabal, G., Graña, M., Marqués, D., Rosabal, J.A., Extended geometry and gauged maximal supergravity (2013) JHEP, 6, p. 046. , [arXiv:1302.5419] [INSPIRE]
  • de Wit, B., Samtleben, H., Trigiante, M., The maximal D = 4 supergravities (2007) JHEP, 6, p. 049. , [arXiv:0705.2101] [INSPIRE]
  • Coimbra, A., Minasian, R., Triendl, H., Waldram, D., Generalised geometry for string corrections (2014) JHEP, 11, p. 160. , [arXiv:1407.7542] [INSPIRE]
  • K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, []; Baron, W.H., Gaugings from E<inf>7(7)</inf> extended geometries (2015) Phys. Rev., D 91, p. 024008. , [arXiv:1404.7750] [INSPIRE]
  • Berkeley, J., Berman, D.S., Rudolph, F.J., Strings and branes are waves (2014) JHEP, 6, p. 006. , [arXiv:1403.7198] [INSPIRE]
  • Bedoya, O.A., Marques, D., Núñez, C., Heterotic α′-corrections in double field theory (2014) JHEP, 12, p. 074. , [arXiv:1407.0365] [INSPIRE]
  • Berman, D.S., Rudolph, F.J., Branes are waves and monopoles (2015) JHEP, 5, p. 015. , [arXiv:1409.6314] [INSPIRE]
  • Godazgar, H., Godazgar, M., Perry, M.J., E<inf>8</inf> duality and dual gravity (2013) JHEP, 6, p. 044. , [arXiv:1303.2035] [INSPIRE]
  • Aldazabal, G., Graña, M., Marqués, D., Rosabal, J.A., The gauge structure of exceptional field theories and the tensor hierarchy (2014) JHEP, 4, p. 049. , [arXiv:1312.4549] [INSPIRE]
  • de Wit, B., Samtleben, H., Gauged maximal supergravities and hierarchies of nonabelian vector-tensor systems (2005) Fortschr. Phys., 53, p. 442. , [hep-th/0501243] [INSPIRE]
  • de Wit, B., Samtleben, H., Trigiante, M., Magnetic charges in local field theory (2005) JHEP, 9, p. 016. , [hep-th/0507289] [INSPIRE]
  • de Wit, B., Nicolai, H., Samtleben, H., Gauged supergravities, tensor hierarchies and M-theory (2008) JHEP, 2, p. 044. , [arXiv:0801.1294] [INSPIRE]
  • Berman, D.S., Cederwall, M., Kleinschmidt, A., Thompson, D.C., The gauge structure of generalised diffeomorphisms (2013) JHEP, 1, p. 064. , [arXiv:1208.5884] [INSPIRE]
  • Hohm, O., Samtleben, H., Exceptional field theory. I. E<inf>6(6)</inf>-covariant form of M-theory and type IIB (2014) Phys. Rev., D 89, p. 066016. , [arXiv:1312.0614] [INSPIRE]
  • Hohm, O., Samtleben, H., Exceptional field theory. II. E<inf>7(7)</inf> (2014) Phys. Rev., D 89, p. 066017. , [arXiv:1312.4542] [INSPIRE]
  • Hohm, O., Samtleben, H., Exceptional field theory. III. E<inf>8(8)</inf> (2014) Phys. Rev., D 90, p. 066002. , [arXiv:1406.3348] [INSPIRE]
  • Le Diffon, A., Samtleben, H., Supergravities without an action: gauging the trombone (2009) Nucl. Phys., B 811, p. 1. , [arXiv:0809.5180] [INSPIRE]
  • Riccioni, F., Steele, D., West, P., The E<inf>11</inf> origin of all maximal supergravities: the hierarchy of field-strengths (2009) JHEP, 9, p. 095. , [arXiv:0906.1177] [INSPIRE]
  • Riccioni, F., Local E<inf>11</inf> and the gauging of the trombone symmetry (2010) Class. Quant. Grav., 27, p. 125009. , [arXiv:1001.1316] [INSPIRE]
  • de Wit, B., Samtleben, H., Trigiante, M., On Lagrangians and gaugings of maximal supergravities (2003) Nucl. Phys., B 655, p. 93. , [hep-th/0212239] [INSPIRE]
  • Le Diffon, A., Samtleben, H., Trigiante, M., N = 8 supergravity with local scaling symmetry (2011) JHEP, 4, p. 079. , [arXiv:1103.2785] [INSPIRE]
  • Hohm, O., Zwiebach, B., On the Riemann tensor in double field theory (2012) JHEP, 5, p. 126. , [arXiv:1112.5296] [INSPIRE]
  • Cartan, É., Les groupes réels simples, finis et continus (1914) Ann. Sci. École Norm. Sup., 31, p. 263
  • C. Strickland-Constable, Subsectors, Dynkin diagrams and new generalised geometries, []; Curtright, T., Generalized gauge fields (1985) Phys. Lett., B 165, p. 304. , [INSPIRE]
  • Aulakh, C.S., Koh, I.G., Ouvry, S., Higher spin fields with mixed symmetry (1986) Phys. Lett., B 173, p. 284. , [INSPIRE]
  • Zwiebach, B., Closed string field theory: quantum action and the B-V master equation (1993) Nucl. Phys., B 390, p. 33. , [hep-th/9206084] [INSPIRE]
  • Hull, C., Zwiebach, B., The gauge algebra of double field theory and Courant brackets (2009) JHEP, 9, p. 090. , [arXiv:0908.1792] [INSPIRE]
  • Hohm, O., Zwiebach, B., Double field theory at order α′ (2014) JHEP, 11, p. 075. , [arXiv:1407.3803] [INSPIRE]
  • Tumanov, A.G., West, P., Generalised vielbeins and non-linear realisations (2014) JHEP, 10, p. 009. , [arXiv:1405.7894] [INSPIRE]
  • West, P., Generalised space-time and gauge transformations (2014) JHEP, 8, p. 050. , [arXiv:1403.6395] [INSPIRE]

Citas:

---------- APA ----------
(2015) . On the exceptional generalised Lie derivative for d ≥ 7. Journal of High Energy Physics, 2015(9).
http://dx.doi.org/10.1007/JHEP09(2015)153
---------- CHICAGO ----------
Rosabal, J.A. "On the exceptional generalised Lie derivative for d ≥ 7" . Journal of High Energy Physics 2015, no. 9 (2015).
http://dx.doi.org/10.1007/JHEP09(2015)153
---------- MLA ----------
Rosabal, J.A. "On the exceptional generalised Lie derivative for d ≥ 7" . Journal of High Energy Physics, vol. 2015, no. 9, 2015.
http://dx.doi.org/10.1007/JHEP09(2015)153
---------- VANCOUVER ----------
Rosabal, J.A. On the exceptional generalised Lie derivative for d ≥ 7. J. High Energy Phys. 2015;2015(9).
http://dx.doi.org/10.1007/JHEP09(2015)153